DOI QR코드

DOI QR Code

Characteristic comparison of sensing materials in mixed potential type NH3 gas sensors for urea-SCR DeNOx system in diesel engine

디젤 엔진 Urea-SCR DeNOx 시스템용 혼합전위 방식 암모니아 가스 센서의 감지물질 특성 비교

  • Choi, An-Gi (Department of Materials Science & Engineering, KAIST) ;
  • Yang, Young-Chang (Department of Materials Science & Engineering, KAIST) ;
  • Koo, Bon-Chul (Department of Materials Science & Engineering, KAIST) ;
  • Park, C.O. (Department of Materials Science & Engineering, KAIST)
  • Received : 2010.12.17
  • Accepted : 2010.03.12
  • Published : 2010.05.31

Abstract

It is considered that the urea injection DeNOx SCR(selective catalytic reduction) system is the only promising method to satisfy the worldwide NOx emission standards. As for the theoretical aspect, reactants of NO and $NO_2$ with $NH_3$ produce $H_2O$, $N_2$ and $O_2$ which do not harm human beings and environmental as well. The realization of maximum NOx conversion (without using a post oxidation catalyst) is only possible with closed loop controlled urea dosing. It means built-in $NH_3$ gas sensor have to be developed for detecting accurate $NH_3$ concentration for the feedback system. Using YSZ(yttria-stabilized zirconia) as a solid state electrolyte and $In_2O_3$ as a sensing material, this paper aims to study dependable $NH_3$ gas sensor for the promising solution of DeNOx technology, which have a reproducible electric output signal, a high sensitivity and fast response.

Keywords

References

  1. K. M. Adam, J. V. Cavataio, and R. H. Hammerle, “Lean NOx catalysis for diesel passenger cars: Investigating effects of sulfur dioxide and space velocity”, Applied Catalysis B, vol. 10, pp. 157-181, 1996. https://doi.org/10.1016/0926-3373(96)00029-X
  2. J.S. Park, B. Y. Yoon, and C. O. Park, “The development of new oxide materials and modified mixed potential sensing method for highly sensitive NOx sensor”, J. Kor. Sensors Soc., vol. 17, no. 1, pp. 61-68, 2008. https://doi.org/10.5369/JSST.2008.17.1.061
  3. Cho, S. M., “Properly apply selective catalytic reduction for NOx removal”, Chem. Eng. Prog., pp. 39-45, 1994.
  4. Lepperhoff, G. and Schommers, J., “Verhalten Von SCR-Katalysatoren Im Dieselmotorischen Abgas”, MTZ, Vol. 49, pp. 1, 1988.
  5. Bjorn Timmer, Wouter Olthuis, and Albert van den Berg, “Ammonia sensor and their applications - a review”, Sensors and Actuators B, vol. 107, pp. 666-677, 2005. https://doi.org/10.1016/j.snb.2004.11.054
  6. M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, and L. A. Patil, “Modified zinc oxide thick film resistors as $NH_3$ gas sensor”, Sensors and Actuators B, vol. 115, pp. 128-133, 2006. https://doi.org/10.1016/j.snb.2005.08.030
  7. Chandra Sekhar Rout, Manu Hegde, A govindaraj, and C. N. R. Rao, “Ammonia sensors based on metal oxide nanostructures”, Nanotechnology, vol. 18, pp. 1-9, 2007.
  8. G. S. Trivikrama Rao and D. Tarakarama Rao, “Gas sensitivity of ZnO based thick film sensor to $NH_3$ at room temperature”, Sensors and Actuators B, vol. 55, pp. 166-169, 1999. https://doi.org/10.1016/S0925-4005(99)00049-0
  9. Ralf Moos, Ralf Muller, Carsten Plog, Aleksandar Knezevic, Holger Leye, Eckard Irion, Tillmann Braun, Klaus-Jurgen Marquardt, and Klaus Binder, “Selective ammonia exhaust gas sensor for automotive applications”, Sensors and Actuators B, vol. 83, pp. 181-189, 2002. https://doi.org/10.1016/S0925-4005(01)01038-3
  10. Michael E Webber, Tyson MacDonald, Michael B Pushkarsky, C Kumar N Patel, Yongjing Zhao, Nichole Marcillac, and Frank M Mitloehner, “Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy”, Meas. Sci. Technol., vol. 16, pp. 1547-1553, 2005. https://doi.org/10.1088/0957-0233/16/8/002
  11. Y.-C. Yang and C.-O. Park, “Oxygen sensor for the low temperature-measurement using yttria stabilized zirconia(YSZ) electrolyte and Ag electrode”, J. Kor. Sensors Soc., vol. 15, no. 2, pp. 97-101, 2006. https://doi.org/10.5369/JSST.2006.15.2.097
  12. G. Sarala Devi, V. Bala Subrahmanyama, S.C. Gadkari, and S.K. Gupta, “$NH_3$ gas sensing properties of nanocrystalline ZnO based thick films”, Analytica Chimica Acta 568, pp. 41-46, 2006. https://doi.org/10.1016/j.aca.2006.02.040
  13. E Cetinorgu and S Goldsmith, “Chemical and thermal stability of the characteristics of filtered vacuum arc deposited ZnO, $SnO_2$ and zinc stannate thin films”, J. Phys. D: Appl. Phys. vol. 40, pp. 5220-5226, 2007. https://doi.org/10.1088/0022-3727/40/17/031
  14. N. Barsan, A. Dieguez, W. Gopel, A. Gurlo, M. Ivanovskaya, M. Schweizer-Berberich, and U. Weimar, “Grain size control in nanocrystalline $In_2O_3$ semiconductor gas sensors”, Sensors and Actuators B, vol. 44, pp. 327-333, 1997. https://doi.org/10.1016/S0925-4005(97)00199-8