DOI QR코드

DOI QR Code

Fabrication and Characterization of BCP Nano Particle Loaded PCL Fiber and Their Biocompatibility

  • Nguyen, Thi-Phuong (Department of Biomedical Engineering and Materials,School of Medicine, Soonchunhyang University) ;
  • Lee, Byong-Taek (Department of Biomedical Engineering and Materials,School of Medicine, Soonchunhyang University)
  • Received : 2010.06.21
  • Accepted : 2010.07.27
  • Published : 2010.07.27

Abstract

The electrospinning process was established as a promising method to fabricate nano and micro-textured scaffolds for tissue engineering applications. A BCP-loaded PCL micro-textured scaffold thus can be a viable option. The biocompatibility as well as the mechanical properties of such scaffold materials should be optimized for this purpose. In this study, a composite scaffold of poly ($\varepsilon$-caprolactone) (PCL)-biphase calcium phosphate (BCP) was successfully fabricated by electrospinning. EDS and XRD data show successful loading of BCP nano particles in the PCL fibers. Morphological characterization of fibers shows that with a higher loaded BCP content the fiber surface was rougher and the diameter was approximately 1 to 7 ${\mu}m$. Tensile modulus and ultimate tensile stress reached their highest values in the PCL- 10 wt% BCP composite. When content of nano ceramic particles was low, they were dispersed in the fibers as reinforcements for the polymer matrix. However, at a high content of ceramic particles, the particles tend to agglomerate and lead to decreasing tensile modulus and ultimate stress of the PCL-BCP composite mats. Therefore, the use of nano BCP content for distribution in fiber polymer using BCP for reinforcement is limited. Tensile strain decreased with increasing content of BCP loading. From in vitro study using MG-63 osteoblast cells and L-929 fibroblast like cells, it was confirmed that electrospun PCL-BCP composite mats were biocompatible and that spreading behavior was good. As BCP content increased, the area of cell spreading on the surface of the mats also increased. Cells showed the best adherence on the surface of composite mats at 50 wt% BCP for both L-929 fibroblast-like cells and MG-63 osteoblast cell. PCL- BCP composites are a promising material for application in bone scaffolds.

Keywords

References

  1. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang and X. Jing, J. Contr. Release., 92(3), 227 (2003). https://doi.org/10.1016/S0168-3659(03)00372-9
  2. T. B. Bini, S. Gao, X. Xu, S. Wang, S. Ramakrishna and K. W. Leong, J. Biomed. Mater. Res. A, 68(2), 286 (2004).
  3. H. Yoshimoto, Y. M. Shin, H. Terai and J. P. Vacanti, Biomaterials, 24(12), 2077 (2003). https://doi.org/10.1016/S0142-9612(02)00635-X
  4. M. Shin, O. Ishii, T. Sueda and J. P. Vacanti, Biomaterials, 25(17), 3717 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.055
  5. M. Shin , H. Yoshimoto and J. P Vacanti, Tissue Eng., 10(1), 33 (2004). https://doi.org/10.1089/107632704322791673
  6. W. J. Li, R. Tuli, X. Huang, P. Laquerriere and R. S. Tuana, Biomaterials, 26(25), 5158 (2005). https://doi.org/10.1016/j.biomaterials.2005.01.002
  7. C. D. Gaudio, A. Bianco, M. Folin, S. Baiguera and M. Grigioni, J. Biomed. Mater. Res., 89A(4), 1028 (2008). https://doi.org/10.1002/jbm.a.32048
  8. K. A. Gross, L. M. Luis and M. R. Lorenzo, Biomaterials, 25(20), 4955 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.046
  9. G. Wei and P. X. Ma, Biomaterials, 25(19), 4749 (2004). https://doi.org/10.1016/j.biomaterials.2003.12.005
  10. L. D. Silvio, M. J. Dalby and W. Bonfield, Biomaterials, 23(1), 101 (2002). https://doi.org/10.1016/S0142-9612(01)00084-9
  11. T Vinoy, J Sunita, J. Kalonda, J. Moncy, Y. K Vohra, J. Nanosci. Nanotechnol., 6(2), 487 (2006). https://doi.org/10.1166/jnn.2006.097
  12. P. Wutticharoenmongkol, N. Sanchavanakit, P. Pavasant and P. Supaphol, Macromol. Biosci., 6, 70 (2006). https://doi.org/10.1002/mabi.200500150
  13. J. R. Venugopal, S. Low, A. T. Choon, A. B. Kumar and S. Ramakrishna, Artif. Organs, 32(5), 388 (2008). https://doi.org/10.1111/j.1525-1594.2008.00557.x
  14. E. D. Federico, I. Moscatelli, A. Camaioni, I. Armentano, L. Campagnolo, M. Dottori, J. M. Kenny, G. Siracusa and G. Gusmano, Mater. Sci. Eng.: C, 29(6), 2063 (2009). https://doi.org/10.1016/j.msec.2009.04.004
  15. E. A. D. Santos, M. Farina, G. A. Soares and K. Anselme, J. Biomed. Mater. Res., 89A, 510 (2009). https://doi.org/10.1002/jbm.a.31991
  16. T. P. Sastry and R. V. S. Kumar, J. Biomater. Appl., 19, 341 (2005). https://doi.org/10.1177/0885328205048633
  17. T. J. Sill and H. A. Recum, Biomaterials, 29, 1989 (2008). https://doi.org/10.1016/j.biomaterials.2008.01.011
  18. T. Lee, M. H. Youn, R. K. Paul, K. H . Lee and H. Y. Song, Mater. Chem. Phys., 104(2), 249 (2007). https://doi.org/10.1016/j.matchemphys.2007.02.009
  19. G. Mickisch, S. Fajta, G. Keilhauer, E. Schlick, R. Tschada and P. Alken, Urol. Res., 18(2), 131 (1990). https://doi.org/10.1007/BF00302474
  20. W. J. Li, R. L. Mauck and R. S. Tuan, J. Biomed. Nanotechnol., 1(3), 259 (2005). https://doi.org/10.1166/jbn.2005.032
  21. V. Comte, C. Lagneau, P. Exbrayat, M. Lissac, N. J. Renault and L. Ponsonnet, Mater. Sci. Eng.: C, 25(1), 51 (2005). https://doi.org/10.1016/j.msec.2004.06.001
  22. T. Matsuura, R. Hosokawa, K. Okamoto, T. Kimoto, Y. Akagawa, Biomaterials, 21(11), 1121 (2000). https://doi.org/10.1016/S0142-9612(99)00264-1
  23. Z. Hong, P. Zhang, C. He, X. Qiu, A. Liu, L. Chen, X. Chen, and X. Jing, Biomaterials, 26(32), 6296 (2005). https://doi.org/10.1016/j.biomaterials.2005.04.018
  24. J. Y. Lim, M. C. Shaughnessy, Z. Zhou, H. Noh, E. A. Vogler and H. J. Donahue, Biomaterials, 29(12), 1776(2008). https://doi.org/10.1016/j.biomaterials.2007.12.026
  25. K. Anselme, Biomaterials, 21(7), 667 (2000). https://doi.org/10.1016/S0142-9612(99)00242-2
  26. A. D. Santos, M. Farina, G. A. Soares and K. Anselme, J. Mater. Sci. Mater. Med., 19(6), 2307 (2008). https://doi.org/10.1007/s10856-007-3347-4
  27. J. Venugopal, S. Mitra, V. R. G. Dev and S. Ramakrishna, Biomaterials, 30(11), 2085 (2009). https://doi.org/10.1016/j.biomaterials.2008.12.079
  28. M. Ngiama, S. Liaob. A. J. Patilc, Z. Chengb, C. K. Chanb and S. Ramakrishnab, Bone, 45(1), 4 (2009). https://doi.org/10.1016/j.bone.2009.03.674
  29. L. Ambrosio, L. Savarino, D. Granchi, E. Cenni, N. Baldini, S. Pagani, S. Guizzardi, F. Causa and A. Giunti, Biomaterials, 24(21), 3815 (2003). https://doi.org/10.1016/S0142-9612(03)00263-1
  30. T. Matsuura, R. Hosokawa, K. Okamoto, T. Kimoto and Y. Akagawa, Biomaterials, 21(11), 1121 (2000). https://doi.org/10.1016/S0142-9612(99)00264-1
  31. S. Osawa, M. Yabe, M. Miyamura and K. Mizuno, Polymer, 47(11), 3711 (2006). https://doi.org/10.1016/j.polymer.2006.03.080

Cited by

  1. bone tissue regenerating capability of different PCL blends vol.25, pp.5, 2014, https://doi.org/10.1080/09205063.2013.878870