Design Methodology of Gap Slab for Post-Tensioned Prestressed Concrete Pavement

포스트텐션 콘크리트 포장의 Gap Slab 설계 방안

  • 박희범 (경희대학교 대학원 토목공학과) ;
  • 김성민 (경희대학교 공과대학 토목공학과) ;
  • 심재수 (경희대학교 공과대학 토목공학과)
  • Received : 2010.05.20
  • Accepted : 2010.05.31
  • Published : 2010.06.15

Abstract

This study was conducted to develop the design methodology of gap slabs for the post-tensioned concrete pavement (PTCP). The gap slabs were considered as unbonded, half bonded, and bonded types. According to the types of the gap slabs, the curling stresses were investigated first under the environmental loads. The stresses due to the vehicle loads were analyzed considering both the single and tandem axles. The method to calculate the prestressing amount was suggested by comparing the combined stresses due to both loads and the allowable tensile stress of concrete. The prestressing amount for the unbonded type gap slab could be designed by considering only the gap slab; however, for the half bonded and bonded gap slabs, the whole PTCP slab should be analyzed to properly design the prestressing amount.

본 연구는 포스트텐션 콘크리트 포장(PTCP: Post-Tensioned Concrete Pavement) 공법의 Gap Slab 설계 방안을 구축하기 위하여 수행되었다. Gap Slab은 특징에 따라 Unbonded, Half Bonded, Bonded 방식으로 구분하여 고려하였다. 먼저 각 Gap Slab 방식에 따라 환경하중이 작용할 때 슬래브의 컬링에 의해 발생하는 인장응력을 산정하였으며, 차륜하중에 의한 응력은 단축과 복축 하중을 모두 고려하여 산정하였다. 환경 및 차륜하중에 의해 발생하는 혼합 최대 인장응력을 구하여 허용인장응력과의 비교를 통하여 Gap Slab에 도입하는 긴장량을 산정하는 방법을 제시하였다. Unbonded 방식은 Gap Slab 만을 고려하여 응력 분포를 분석함으로써 긴장량을 설계할 수 있으나, Half Bonded 및 Bonded 방식은 PTCP의 전체 슬래브의 거동을 분석함으로써 적절한 설계가 가능하며 이에 대한 방법론을 제시하였다.

Keywords

References

  1. AASHTO (1993). Guide for Design of Pavement Structures, American Association of State Highway and Transportation Officials.
  2. ABAQUS (2007). User's Manual Version 6.7, Hibbit, Karlsson & Sorensen, Inc., Pawtucket, R. I.
  3. Brunner, R. J. (1975). "Prestressed Pavement Demonstration Project," Transportation Research Record, No. 535, pp. 62-72.
  4. Friberg, B. F. and Pasko, T. J. (1973). "Prestressed Concrete Highway Pavement at Dulles International Airport," Highway Research Record, No. 466, pp. 1-19.
  5. Klunker, F. (1981). "Status and Developments in the Construction of Prestressed Concrete Runways in European Airport," Proceedings of the 2nd International Conference on Concrete Pavement Design, Session 6: Airport Pavement, Purdue University, West Lafayette, Indiana.
  6. Merritt, D. K., McCullough, B. F., Burns, N. H., and Schindler, A. K. (2000). "The Feasibility of Using Precast Concrete Panels to Expedite Highway Pavement Construction," Report 1517-1, Center for Transportation Research, The University of Texas at Austin.
  7. Merritt, D. K., McCullough, B. F., and Burns, N. H. (2002). "Construction and Preliminary Monitoring of the Georgetown, Texas Precast Prestressed Concrete Pavement," Report 5-1517-1, Center for Transportation Research, The University of Texas at Austin.
  8. Powers, R. and Zaniewski, J. (1987). "Nine Year Performance Evaluation of Arizona's Prestressed Concrete Pavement," Transportation Research Record, No. 1136, pp. 1-11.