DOI QR코드

DOI QR Code

Synthesis and Electrochemical Properties of Nanocrystalline LiFePO4 Obtained by Different Methods

  • Son, C.G. (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Chang, D.R. (Korea Institute of Industrial Technology) ;
  • Kim, H.S. (Korea Institute of Industrial Technology) ;
  • Lee, Y.S. (Faculty of Applied Chemical Engineering, Chonnam National University)
  • Received : 2011.05.10
  • Accepted : 2011.06.29
  • Published : 2011.06.30

Abstract

Nanocrystalline $LiFePO_4$ powders were prepared at 660-$670^{\circ}C$ in an Ar atmosphere using two different synthetic routes, solid-state and sol-gel. Both materials showed well-developed XRD patterns without any impurity peaks. Particles composed in the range of 200-300 nm from the solid-state method, and 50-100 nm from the sol-gel method, were confirmed through scanning electron microscopy and dynamic light scattering. The $LiFePO_4$ obtained by the sol-gel method offered a high discharge capacity (153 mAh/g) and stable discharge behavior, even at elevated temperatures (50 and $60^{\circ}C$), whereas poor electrochemical performance was observed from the solid-state method. Rate capability studies for sol gel-derived $LiFePO_4$ ranged from 0.2 to 30 C, which revealed excellent retention over 70 cycles with a 99.9% capacity.

Keywords

References

  1. A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997). https://doi.org/10.1149/1.1837571
  2. A. Yamada, S.C. Chung and K. Hinokuma, J. Electrochem. Soc., 148, A224 (2001). https://doi.org/10.1149/1.1348257
  3. S.Y. Chung, J.T. Bloking and Y.M. Chiang, Nat. Mater., 1, 123 (2002). https://doi.org/10.1038/nmat732
  4. E.M. Bauer, C. Bellitto, M. Pasquali, P.P. Prosini and G. Righini, Electrochem. Solid-State Lett., 7, A85 (2004). https://doi.org/10.1149/1.1651393
  5. A. Manthiram, A.V. Murugan, A. Sarkar and T. Muraliganth, Energy Environ. Sci., 1, 621 (2008). https://doi.org/10.1039/b811802g
  6. R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J.M. Goupil, S. Pejovnik and J. Jamnik, J. Power Sources, 153, 274 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.033
  7. H. Huang, S.C. Yin and L.F. Nazar, Electrochem. Solid- State Lett., 4, A170 (2001). https://doi.org/10.1149/1.1396695
  8. S. Yang, Y. Song, P.Y. Zavalij and M.S. Whittingham, Electrochem. Commun., 4, 239 (2002).
  9. F. Croce, A.D. Epifanio, J. Hassoun, A. Deptula, T. Olczac and B. Scrosati, Electrochem. Solid-State Lett., 5, A47 (2002). https://doi.org/10.1149/1.1449302
  10. R. Dominko, J.M. Goupil, M. Bele, M. Gaberseek, M. Remskar, D. Hanzel and J. Jamnik, J. Electrochem. Soc., 152, A843 (2005). https://doi.org/10.1149/1.2116727
  11. A.D. Spong, G. Vitins and J.R. Owen, J. Electrochem. Soc., 152, A2376 (2005). https://doi.org/10.1149/1.2120427
  12. R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel and S. Pejovnik, J. Electrochem. Soc., 152, A607 (2005). https://doi.org/10.1149/1.1860492
  13. P.S. Herle, B. Ellis, N. Coombs and L.F. Nazar, Nat. Mater., 3, 147 (2004). https://doi.org/10.1038/nmat1063
  14. P.P. Prosini, M. Lisi, D. Zane and M. Pasquali, Solid State Ionics, 148, 45 (2002). https://doi.org/10.1016/S0167-2738(02)00134-0
  15. K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee and H.G. Kim, Electrochem. Commun., 5, 839 (2003). https://doi.org/10.1016/j.elecom.2003.08.005
  16. S. Yang, P.Y. Zavalij and M.S. Whittingham, Electrochem. Commun., 3, 505 (2003).
  17. K. Saravanan, M.V. Reddy, P. Balaya, H. Gong, B.V.R. Chowdari and J.J. Vittal, J. Mater. Chem., 19, 605 (2009). https://doi.org/10.1039/b817242k
  18. G.X. Wang, S. Bewlay, J. Yao, J.H. Ahn, S.X. Dou and H.K. Liu, Electrochem. Solid-State Lett., 7, A503 (2004). https://doi.org/10.1149/1.1819867
  19. J. Yang and J.J. Xu, Electrochemical and Solid-State Lett., 7, A515 (2004). https://doi.org/10.1149/1.1819893
  20. C.R. Sides, F. Croce, V.Y. Young, C.R. Martin and B. Scrosati, Electrochem. Solid-State Lett., 8, A484 (2005). https://doi.org/10.1149/1.1999916
  21. M. Takahashi, S. Tobishima, K. Takei and Y. Sakurai, J. Power Sources, 97-98, 508 (2001). https://doi.org/10.1016/S0378-7753(01)00728-5
  22. S.T. Myung, S. Komaba, N. Hirosaki, H. Yashiro and N. Kumagai, Electrochim. Acta, 49, 4213 (2004). https://doi.org/10.1016/j.electacta.2004.04.016
  23. S.S. Zhang, J.L. Allen, K. Xu and T.R. Jow, J. Power Sources, 147, 234 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.004
  24. A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon and W. van Schalkwijk, Nat. Mater., 4, 366 (2005). https://doi.org/10.1038/nmat1368
  25. Z. Li, D. Zhang and F. Yang, J. Mater. Sci., 44, 2435 (2009). https://doi.org/10.1007/s10853-009-3316-z
  26. M. Schmidt, U. Heider, A. Kuehner, R. Oesten, M. Jungnitz and N. Ignat'ev, P. Sartori, J. Power Sources, 97-98, 557 (2001). https://doi.org/10.1016/S0378-7753(01)00640-1
  27. R. Oesten, U. Heider and M. Schmidt, Solid State Ionics, 148, 391 (2002). https://doi.org/10.1016/S0167-2738(02)00078-4
  28. J.S. Gnanaraj, M.D. Levi, Y. Gofer, D. Aurbach and M. Schmidt, J. Electrochem. Soc., 150, A445 (2003). https://doi.org/10.1149/1.1557965
  29. M. Koltypin, D. Aurbach, L. Nazar and B. Ellis, Electrochem. Solid-State Lett., 10, A40 (2007). https://doi.org/10.1149/1.2403974
  30. M. Koltypin, D. Aurbach, L. Nazar and B. Ellis, J. Power Sources, 174, 1241 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.045
  31. K. Amine, J. Liu and I. Belharouak, Electrochem. Commun., 7, 669 (2005). https://doi.org/10.1016/j.elecom.2005.04.018
  32. D. Choi and P.N. Kumta, J. Power Sources, 163, 1064 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.082

Cited by

  1. Study on structure and electrochemical properties of carbon-coated monoclinic Li3V2(PO4)3 using synchrotron based in situ X-ray diffraction and absorption vol.569, 2013, https://doi.org/10.1016/j.jallcom.2013.03.188
  2. Catalytic activity of carbon-sphere/Co3O4/RuO2 nanocomposite for Li-air batteries vol.31, pp.1-2, 2013, https://doi.org/10.1007/s10832-013-9831-y
  3. Improving electrochemical properties of porous iron substituted lithium manganese phosphate in additive addition electrolyte vol.275, 2015, https://doi.org/10.1016/j.jpowsour.2014.11.028
  4. Suppression of interface reaction of LiCoO2 thin films by Al2O3-coating vol.29, pp.1, 2012, https://doi.org/10.1007/s10832-012-9732-5
  5. Enhanced electrochemical properties of Li[Ni0.5Co0.2Mn0.3]O2 cathode by surface coating using LaF3 and MgF2 vol.29, pp.2, 2012, https://doi.org/10.1007/s10832-012-9747-y
  6. Manganese Doped LiFePO4as a Cathode for High Energy Density Lithium Batteries vol.16, pp.3, 2013, https://doi.org/10.5229/JKES.2013.16.3.157