IEEE 802.11n용 다중모드 layered LDPC 복호기

Multi-mode Layered LDPC Decoder for IEEE 802.11n

  • 투고 : 2011.03.31
  • 발행 : 2011.11.25

초록

본 논문에서는 IEEE 802.11n 무선 랜 표준의 3가지 블록길이(648, 1296, 1944)와 4가지 부호율(1/2, 2/3, 3/4, 5/6)을 지원하는 다중모드 LDPC 복호기를 설계하였다. 하드웨어 복잡도를 고려하여 layered 복호방식의 블록-시리얼(부분병렬) 구조로 설계 되었으며, 최소합 알고리듬의 특징을 이용한 검사노드 메모리 최소화 방법을 고안하여 적용함으로써 기존방법에 비해 검사노드 메모리 용량을 47% 감소시켰다. Matlab 모델링과 시뮬레이션을 통해 고정소수점 비트 폭이 LDPC 복호기의 복호성능에 미치는 영향을 분석하고, 이를 통해 최적의 하드웨어 설계조건을 도출하여 반영하였다. 설계된 회로는 FPGA 구현을 통해 하드웨어 동작을 검증하였으며, 0.18-${\mu}m$ CMOS 셀 라이브러리로 합성한 결과 약 219,100 게이트와 45,036 비트의 메모리로 구현되었고, 50 MHz@2.5V로 동작하여 164~212 Mbps의 성능을 갖는 것으로 평가되었다.

This paper describes a multi-mode LDPC decoder which supports three block lengths(648, 1296, 1944) and four code rates(1/2, 2/3, 3/4, 5/6) of IEEE 802.11n wireless LAN standard. To minimize hardware complexity, it adopts a block-serial (partially parallel) architecture based on the layered decoding scheme. A novel memory reduction technique devised using the min-sum decoding algorithm reduces the size of check-node memory by 47% as compared to conventional method. From fixed-point modeling and Matlab simulations for various bit-widths, decoding performance and optimal hardware parameters such as fixed-point bit-width are analyzed. The designed LDPC decoder is verified by FPGA implementation, and synthesized with a 0.18-${\mu}m$ CMOS cell library. It has 219,100 gates and 45,036 bits RAM, and the estimated throughput is about 164~212 Mbps at 50 MHz@2.5v.

키워드

참고문헌

  1. R. Gallager, "Low-Density Parity-Check Codes," IRE Trans. Info. Theory, vol. IT-8, pp. 21-28, Jan. 1962. https://doi.org/10.1109/TIT.1962.1057683
  2. D.J.C. MacKay and R.M. Neal, "Near Shannon limit performance of low density parity check codes," IEE Electronic Letter, vol. 32, no. 18, pp. 1645-1646, Aug. 1996. https://doi.org/10.1049/el:19961141
  3. T. Rhicardson and R. Urbanke, "Efficient Encoding of Low Density Parity Check Codes," IEEE Trans. Inform. Theory, vol. 47, pp. 638-656, Feb. 2001. https://doi.org/10.1109/18.910579
  4. C. Zhang, Z. Wang, J. Sha, L. Li and J. Lin, "Flexible LDPC Decoder Design for Multigigabit- per-Second Applications," IEEE Trans. Circuits and Systems-I, vol. 57, no. 1, pp. 116-124, Jan. 2010.
  5. X. Zhang and F. Cai, "Efficient Partial-Parallel Decoder Architecture for Quasi-Cyclic Nonbinary LDPC Codes," IEEE Trans. Circuits and Systems-I, vol. 58, no. 2, pp. 402-414, Feb. 2011. https://doi.org/10.1109/TCSI.2010.2071830
  6. 류혜진, 이종열, "DVB-S2 기반에서 다양한 부호 화 율을 지원하는 LDPC 복호기," 대한전자공학회 논문지, 제45권 SD편, 제2호, pp. 118-124, Feb., 2008.
  7. 박주열, 이소진, 정기석, 조성민, 하진석, 송용호, "메모리 사용을 최적화한 부분병렬화 구조의 CMMB 표준 지원 LDPC 복호기 설계," 대한전자 공학회 논문지, 제48권 SD편, 제1호, pp. 22-30, Jan., 2011.
  8. T. Mohsenin and B. Bass, "Trends and Challenges in LDPC Hardware Decoders," 2009 Asilomar Conference on Signals, Systems and Computers, pp. 1273-1277, Nov. 2009.
  9. 정수경, 박태근, "Quasi-Cyclic Low Density Parity Check 복호기의 다양한 설계관점에 대한 성능분석," 대한전자공학회 논문지, 제46권 SD편, 제11호, pp. 92-100, Nov, 2009.
  10. DVB-S2 Draft ETSI EN 302 307 V1.1.1 (2004- 06), ETSI
  11. IEEE 802.11n: Wireless LAN medium access control(MAC) and physical layer(PHY) specification: enhancements for higher throughput, IEEE Std. P802.11n, 2008.
  12. IEEE 802.16e, Part 16: Air interface for fixed and mobile broadband wireless access systems, IEEE std 802.16e-2005, Feb. 2006.
  13. IEEE 802.3an Task Force, 2006. Available: http://www.ieee802.org/3/an/index.html
  14. Framing structure, Channel coding and modulation for digital television terrestrial broadcasting system, R. P. China Standard Number: GB20600-2006 Std.
  15. R. M. Tanner, "A Recursive Approach to Low Complexity Codes," IEEE Trans. Infor. Theory, vol. IT-27, no. 5, pp 533-547, sep. 1981. https://doi.org/10.1109/TIT.1981.1056404
  16. M. Chiani, A. Conti, and A. Ventura, "Evaluation of low-density parity-check codes over block fading channels," 2000 IEEE Inter. Conf. on Comm., pp. 1183-1187, 2000.
  17. M. Fossorier, M. Mihaljevic and H. Imai, "Reduced complexity iterative decoding of low-density parity check codes based on belief propagation," IEEE Trans. Commun., vol. 47, pp. 673-680, May 1999. https://doi.org/10.1109/26.768759
  18. X.-Y. Shih, C.-Z. Zhan, and A.-Y.(Andy) Wu, "A 7.39mm2 76mW (1944, 972) LDPC Decoder Chip for IEEE 802.11n Applications," IEEE Asian Solid-State Circuits Conference, pp. 3-5, Nov. 2008.
  19. Massimo Rovini, Giuseppe Gentile, Francesco Rossi and Luca Fanucci, "A Minimum- Latency Block-Serial Architecture of a Decoder for IEEE 802.11n LDPC Codes," IFIP Int. Conf. on Very Large Scale Integration (VLSI-SoC 2007), pp. 236-241, 2007.
  20. K. Gunnam, G. Choi, W. Wang and M. Yeary, "Multi-rate layered decoder architecture for block LDPC codes of the IEEE 802.11n wireless standard," IEEE Intern. Symp. on Circuits and Systems(ISCAS), pp. 1645-1648, May 2007.
  21. W. Ji, Y. Abe, T. Ikenaga and S. Goto, "A high performance LDPC decoder for IEEE 802.11n standard," 2009 Asia and South Pacific Design Automation Conference,(ASP-DAC 2009), pp. 127-128, 2009.