DOI QR코드

DOI QR Code

VOCs 연소용 Mn-PC 촉매 특성

Catalytic Characteristics of Mn-PC for VOCs Combustion

  • 서성규 (전남대학교 건설환경공학부) ;
  • 마충곤 (전남대학교 건설환경공학부) ;
  • 류의 (전남대학교 건설환경공학부) ;
  • 윤형선 (한국산업단지공단 전남EIP사업단) ;
  • 김상채 (목포대학교 환경교육과)
  • Seo, Seong-Gyu (Department of Civil and Environmental Engineering, Chonnam National University) ;
  • Ma, Zhong-Kun (Department of Civil and Environmental Engineering, Chonnam National University) ;
  • Liu, Yi (Department of Civil and Environmental Engineering, Chonnam National University) ;
  • Yoon, Hyung-Sun (Jeonnam Eco-Industrial Park Development Division, Korea Industrial Complex Corp.) ;
  • Kim, Sang-Chai (Department of Environmental Education, Mokpo National University)
  • 투고 : 2010.11.11
  • 심사 : 2011.04.20
  • 발행 : 2011.04.29

초록

본 연구에서는 Mn-PC 촉매와 상압유통식 반응장치를 이용하여 $200{\sim}380^{\circ}C$ 범위에서 VOCs(아세트알데히드, 프로피온알데히드, 톨루엔) 연소반응을 수행하였다. 촉매 전처리(air, $450^{\circ}C$, 1 hr, 60 cc/min) 전 후의 물리화학적 특성변화 조사는 TGA (Thermogravimetric Analyzer), BET (Brunauer Emmett Teller), EA (Elemental Analyzer), XRD (X-ray Diffractometer) 및 SEM (Scanning Electronic Microscope)을 이용하여 파악하였다. TGA 분석결과 Mn-PC의 열중량(공기 분위기) 감소는 $419^{\circ}C$에서 88 wt.%를 나타내었으며, 전처리 후 비표면적은 크게 증가하는 것으로 확인되었다. EA 분석결과 전처리를 통해서 유기물 성분은 분해 또는 연소되어 거의 관찰되지 않는 것으로 파악되었다. 또한 XRD분석을 통해 Mn-PC 촉매가 전처리 후 새로운 형태의 산화물인 $Mn_3O_4$로 전이됨을 확인하였다. 그리고 SEM 분석결과 전처리 과정에서 많은 micropore가 생성된 것으로 관찰되었다. 프로피온알데히드 연소의 경우 전처리한 Mn-PC는 $Mn_3O_4$와 fresh한 Mn-PC 보다 우수한 촉매활성을 나타내었다. 전처리된 Mn-PC상에서 VOCs 연소 효과는 톨루엔 < 아세트알데히드 < 프로피온알데히드 순서로 나타났다.

In this study, the catalytic activity of Mn-Phthalocyanine (Mn-PC) for VOCs (acetadehyde, propionaldehyde and toluene) combustion was determined. The reaction was carried out in a fixed bed reactor at the temperature range of $200{\sim}380^{\circ}C$. We investigated the physicochemical properties of Mn-PC before and after the pretreatment (air, $450^{\circ}C$, 1 hr, 60 cc/min) by TGA (Thermogravimetric Analyzer), BET (Brunauer Emmett Teller), EA (Elemental Analyzer), XRD (X-ray Diffractometer) and SEM (Scanning Electronic Microscope). By TGA analysis, 88 wt.% mass loss of Mn-PC was found at $419^{\circ}C$. The BET surface area of Mn-PC increased after the pretreatment. The decomposition and combustion of organic components in Mn-PC were observed by EA analysis. We also confirmed that Mn-PC had transformed into a new manganese oxide phase ($Mn_3O_4$) after the pretreatment by XRD analysis. By SEM analysis, many of the micropores generated during the pretreatment were found. The catalytic activity of Mn-PC with the pretreatment for propionaldehyde combustion was higher than that of $Mn_3O_4$ and fresh Mn-PC. It showed the catalytic activity of Mn-PC with the pretreatment for VOCs combustion by the order of toluene < acetadehyde < propionaldehyde.

키워드

참고문헌

  1. U.S EPA, Chemical in the Environment: methanol prepared by Office of Pollution Prevention and Toxics (OPPT) Chemical Fact Sheet. CAS No. 67-56-1, EPA749-F-94-013 (1994).
  2. U.S EPA, Chemical in the Environment: acetaldehyde prepared by Office of Pollution Prevention and Toxics (OPPT) Chemical Fact Sheet. CAS No. 75-07-0, EPA749-F-94-003 (1994).
  3. U.S EPA, Chemical in the Environment: toluene prepared by Office of Pollution Prevention and Toxics (OPPT) Chemical Fact Sheet. CAS No. 108-88-3, EPA749-F-94-021(1994).
  4. 환경부, 환경부고시 제2004-141호(2004).
  5. 환경부, 악취방지법 시행규칙(2009).
  6. Okumura, K., Kobayashi, T., Tanaka H. and Niwa, M., "Toluene combustion over palladium supported on various metal oxides supports," Appl. Catal. B: Environ., 44, 325-331(2003). https://doi.org/10.1016/S0926-3373(03)00101-2
  7. 한국과학기술정보연구원, 촉매연소 기술을 이용한 대기 오염 물질 저감 및 제어 기술, pp. 7-8(2005).
  8. Seo, S. G. and Yoon, H. S., "Characteristics of VOCs oxidation using copper phthalocyanine catalysts," J. Kor. Soc. Atmos. Environ., 20(4), 515-521(2004).
  9. Seo, S. G., Yoon, H. S. and Lee, S. W., "Characteristics of metal-phthalcyanine for catalytic combustion of methanol," J. Korean Soc. Environ. Eng., 22(10), 1809-1809(2000).
  10. Stobbe, E. R., Boer, B. A. and Geus, J. W., "The reduction and oxidation behaviour of manganese oxides," Catal. Today, 47, 161-167(1999). https://doi.org/10.1016/S0920-5861(98)00296-X
  11. Zaki, M. I., Hasan, M. A., Pasupulety, L., Fouad, N. E. and Knozinger, H., "CO and $CH_4$ total oxidation over managanese oxide supported on $ZrO_2$, $TiO_2$, $TiO_2-Al_2O_3$ and $SiO_2-Al_2O_3$ catalysts," New J. Chem., 23, 1197-1202(1999). https://doi.org/10.1039/a907468f
  12. Orlov, A. and Klinowski, J., "Oxidation of volatile organic compounds on SBA-15 mesoporous molecular sieves modified with manganese," Chemosphere, 74(2), 344-348(2009). https://doi.org/10.1016/j.chemosphere.2008.08.049
  13. Azzoni, C. B., Mozzati, M. C., Galinetto, P., Paleari, A., Massarotti, V., Capsoni, D. and Bini, M., "Thermal stability and structural transition of metastable Mn5O8: in situ micro-Raman study," Solid State Commun., 112, 375-378(1999). https://doi.org/10.1016/S0038-1098(99)00368-3
  14. Bastos, S. S. T., Orfao, J. J. M., Freitas, M. M. A., Pereira, M. F. R. and Figueiredo, J. L., "Manganese oxide catalysts synthesized by exotemplating for the total oxidation of ethanol," Appl. Catal. B: Environ., 93(1-2), 30-37(2009). https://doi.org/10.1016/j.apcatb.2009.09.009
  15. 서성규, 여수산단 대기질 모니터링(4차년도), 전남지역환경기술개발센터(JETeC)(2010).