DOI QR코드

DOI QR Code

Evaluation of Flexural Strength of Silicon Die with Thickness by 4 Point Bending Test

4점굽힘시험에 의한 실리콘 다이의 두께에 따른 파단강도 평가

  • Min, Yoon-Ki (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Byeon, Jai-Won (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
  • 민윤기 (서울과학기술대학교 신소재공학과) ;
  • 변재원 (서울과학기술대학교 신소재공학과)
  • Received : 2011.03.05
  • Accepted : 2011.03.21
  • Published : 2011.03.31

Abstract

In this study, flexural strength and fracture behavior of silicon die from single crystalline silicon wafer were investigated as a function of thickness. Silicon wafers with various thickness of 300, 200, 180, 160, 150, and 100 ${\mu}m$ were prepared by mechanical grinding and polishing of as-saw wafers. Flexural strength of 40 silicon dies (size: 62.5 mm${\times}$4 mm) from each wafer was measured by four point bending test, respectively. For statistical analysis of flexural strength, shape factor(i.e., Weibull modulus) and scale factor were determined from Weibull plot. Flexural strength reflecting both statistical fracture probability and size (thickness) effect of brittle silicon die was obtained as a linear function of die thickness. Fracture appearance was discussed in relation with measured fracture strength.

전자기기의 고집적화를 위해 실리콘 웨이퍼의 두께가 점점 얇아지고 있으며 이로 인해 제조공정 중 균열이나 파손이 발생할 가능성이 높아지고 있다. 본 연구에서는 300 ${\mu}m$~100 ${\mu}m$ 두께의 반도체용 단결정 실리콘 웨이퍼의 파단 강도 및 파괴특성을 평가하였다. 기계적 연마를 통해 두께 (300, 200, 180, 160, 150, 100 ${\mu}m$)가 다른 실리콘 웨이퍼를 준비하였다. 하나의 웨이퍼에서 40개의 실리콘 다이(크기 : 62.5 mm${\times}$4 mm)를 얻어 4점 굽힘시험을 통해 평균 강도값을 구하였다. 강도분포의 통계적 해석을 위해 와이블 선도를 이용하여 형상인자(와이블 계수)와 크기인자(확률적 파괴강도)를 얻었다. 취성 실리콘 다이의 시편 크기(두께)효과와 파단 확률이 고려된 통계적 파단강도 값을 실리콘 다이 두께의 함수로 얻었다. 관찰된 파괴양상을 측정된 파단강도와 관련하여 고찰하였다.

Keywords

References

  1. J. D. Wu, C. Y. Huang and C. C. Liao, "Fracture strength characterization and failure analysis of silicon dies", Microelectronics Reliab., 43(2), pp.269-277 (2003). https://doi.org/10.1016/S0026-2714(02)00314-1
  2. H. H. Jiun and G. Omar, "Effect of wafer thinning methods towards fracture strength and topography of silicon die", Microelectronics Reliab., 46(5), pp.836-645 (2006). https://doi.org/10.1016/j.microrel.2005.07.110
  3. Z. Chen, J. B. Han and N. X. Tan, "The strength of the silicon die in flip-chip assemblies", Journal of Electronic Packaging, 125, pp.115-119 (2003).
  4. C. Landesberger, G. Klink, G. Schwinn, and R. Aschenbrenner, "New dicing and thinning concept improves mechanical reliability of ultra thin silicon", IEEE Proc. Int. Symp. on Advanced Packaging Materials, Braselton, Georgia, pp.92-97 (2001).
  5. J. N. Calata, J. G. Bai, X. Liu, S. Wen and G. Q. Lu, "Three-dimensional packaging for power semiconductor devices and modules", IEEE Transactions on Advanced Packaging, 28(3), pp.404-412 (2005). https://doi.org/10.1109/TADVP.2005.852837
  6. P. A. Wang, "Industrial challenges for thin wafer manufacturing", IEEE Proceedings of the Fourth World Conference on Photovoltaic Energy Conversion, pp.1179-1182 (2006).
  7. N. M. Lellan, N. Fan, S. Liu, K. Lau and J. Wu, "Effect of wafer thinning condition on the roughness, morphology and fracture strength of silicon die", ASME J Electron. Packag., 126(1), pp.110-114 (2004). https://doi.org/10.1115/1.1647123
  8. G. Omar, N. Tamaldin, M. R. Muhamad, and T. C. Hock, "Correlation of silicon wafer strength to the surface morphology", IEEE, Semiconductor Electronics Proceedings ICSE International Conference, pp.147-151 (2000).
  9. M. Y. Tsai, and C. H. Chen, "Evaluation of test methods for silicon die strength", Microelectronics Reliab., 48(4), pp933-941 (2008). https://doi.org/10.1016/j.microrel.2008.03.003
  10. P. H. DeHoff, K. J. Anusavice , and P. W. Hathcock. "An evaluation of the four-point flexural test for metal-ceramic bond strength", J. Dent. Res., 61(9), pp.1066-1069 (1982). https://doi.org/10.1177/00220345820610090801
  11. J. Paul, B. Majeed, K. M. Razeeb, and J. Barton, "Statistical fracture modelling of silicon with varying thickness", Acta Materiallia, 54(15), pp.3991-4000 (2006). https://doi.org/10.1016/j.actamat.2006.04.032
  12. ASTM C 1161-02C, "Standard Test Method for Flexural Strength of Advanced Ceramic at Ambient Temperature" (1990).
  13. T. K. Woo, Y. H. Kim, H. S. Ahn, and S. I. Kim, "A study of reflectance of textured crystalline Si surface fabricated by using preferential aqueous etching and grinding processes(in Kor.)", J. Microelectron. Packag. Soc., 16(3), pp.61-65 (2009).
  14. M. K. Choi, and E. K. Kim, "Effect of Si wafer Ultra-thinning on the Silicon surface for 3D mtegration(in Kor.)", J. Microelectron. Packag. Soc., 15(2), pp63-67 (2008).
  15. Y. Desmond, R. Chong, W. E. Lee, B. K. Lim, "Mechanical characterization in failure strength of silicon dice", IEEE Inter. Society Conference on Thermal Phenomena, pp203-210 (2004).