DOI QR코드

DOI QR Code

Multiferroic Property and Crystal Structural Transition of BiFeO3-SrTiO3 Ceramics

  • Kim, A-Young (Department of Semiconductor & Display Engineering, BK21 Graduate School, Hoseo University) ;
  • Han, Seung-Ho (Electronic Materials and Device Research Center, Korea Electronics Technology Institute) ;
  • Kim, Jeong-Seog (Department of Semiconductor & Display Engineering, BK21 Graduate School, Hoseo University) ;
  • Cheon, Chae-Il (Department of Semiconductor & Display Engineering, BK21 Graduate School, Hoseo University)
  • Received : 2011.01.10
  • Accepted : 2011.07.15
  • Published : 2011.07.31

Abstract

Solid solutions of the (1-x)$BiFeO_3-xSrTiO_3$ ceramic system (x = 0~0.4) are explored here in attempts to obtain multiferroic properties in these systems. The polarization-electric field hysteresis, magnetization-magnetic field curves, and dielectric properties are also characterized. This solid-solution system shows a crystal structural transition from a noncentrosymmetric (R3c) structure to a centrosymmetric (Pm-3m) structure at 0.3 < x < 0.4. The solid solution ceramic shows unsaturated M-H behavior and low remanent magnetization over the composition region of 0.1 ${\leq}$ x ${\leq}$ 0.3. The $0.7BiFeO_3-0.3SrTiO_3$ system shows the largest value of $M_s$ at 0.17 emu/g and the smallest value of $H_c$ at 1.06 kOe. The P-E hysteresis curves were not saturated under an electric field as high as E = 70 kV/cm. This system is considered to have multiferroic characteristics in the composition range of 0.1 ${\leq}$ x ${\leq}$ 0.3.

Keywords

References

  1. G. A. Smolenskii and V. M. Yudin, "Weak Ferromagnetism of Some $BiFeO_3-Pb(Fe_{0.5}Nb_{0.5})O_3$ Perovskites," Sov. Phys.-Solid State, 6 2936-42 (1965).
  2. N. A. Hill, "Why are There so Few Magnetic Ferroelectrics?," J. Phys. Chem. B, 104 [29] 6694-709 (2000). https://doi.org/10.1021/jp000114x
  3. J. S. Kim, C. I. Cheon, C. H. Lee, and P. W. Jang, "Weak Ferromagnetism in the Ferroelectric $BiFeO_3-ReFeO_3-BaTiO_3$ Solid Solutions (Re = Dy, La)," J. Appl. Phys., 96 468-74 (2004). https://doi.org/10.1063/1.1755430
  4. I. Sosnowska and P. Fischer, "Refinement of the Crystal and Magnetic Structure of $PrFeO_3$ AT T = 8 K", J. Less Common Metals, 111 109-11 (1985). https://doi.org/10.1016/0022-5088(85)90175-4
  5. W. P. Wolf, "Rare-Earth Compounds," J. Appl. Phys., 40 1061-69 (1969). https://doi.org/10.1063/1.1657530
  6. 6. G. Catalan and J. F. Scott, "Physics and Applications of Bismuth Ferrite," Adv. Mater., 21 2463-85 (2009). https://doi.org/10.1002/adma.200802849
  7. I. Sosnowska, T. Peterlin-Neumaier, and E. Strichele, "Spiral Magnetic Ordering in Bismuth Ferrite", J. Phys. C:Solid State Phys., 15 4835 (1982). https://doi.org/10.1088/0022-3719/15/23/020
  8. M. Mahesh Kumar, V. R. Palkar, K. Srinivas, and S. V. Suryanarayana, "Ferroelectricity in a Pure $BiFeO_3$ Ceramic", Appl. Phys. Lett., 76 2764-66 (2000). https://doi.org/10.1063/1.126468
  9. S. V. Kiselev, R. P. Ozerov, and G. S. Zhdanov, "Detection of Magnetic Order in Ferroelectric $BiFeO_3$ by Neutron Diffraction," Sov. Phys.-Doklady, 7 742-44 (1963).
  10. J. R. Teague, R. Gerson, and W. J. James, "Dielectric Hysteresis in Single Crystal $BiFeO_3$," Solid State Communications, 8 1073-74 (1970). https://doi.org/10.1016/0038-1098(70)90262-0
  11. S.-W. Cheong and M. Mostovoy, "Multiferroics: a Magnetic Twist for Ferroelectricity", Nature Materials, 6 13-20 (2007). https://doi.org/10.1038/nmat1804
  12. I. E. Dzialoshinskii, "Thermodynamic Theory of Weak Fer-romagnetism in Antiferromagnetic Substances", Sov. Phys. JETP, 5 1259-72 (1957).
  13. C. Zhou, X. Liu, W. Li, and C. Yuan, "Structure and Piezoelectric Properties of $Bi_{0.5}Na_{0.5}TiO_3-Bi_{0.5}K_{0.5}TiO_3-BiFeO_3$ Lead-free Piezoelectric Ceramics," Materials Chemistry and Physics, 114 832-36 (2009). https://doi.org/10.1016/j.matchemphys.2008.10.063
  14. R. Zuo, C. Ye, and X. Fang, "$Na_{0.5}K_{0.5}NbO_3-BiFeO_3$ Leadfree Piezoelectric Ceramics", J. Phys. Chem. Sol., 69 230-35 (2008). https://doi.org/10.1016/j.jpcs.2007.08.066
  15. S. H. Han, K. S. Kim, H. G. Kim, H.-G. Lee, H.-W. Kang, C. I. Cheon, and J. S. Kim, "Crystal Structure and Spontaneous Magnetism of $BiFeO_3$ Powder Synthesized by Hydrothermal Method," J. Nanoscience and Nanotechnology, 10 1-5 (2010). https://doi.org/10.1166/jnn.2010.1484
  16. S. K. Singha, H. Ishiwara, and K. Maruyama, "Enhanced Polarization and Reduced Leakage Current in $BiFeO_3$ Thin Films Fabricated by Chemical Solution Deposition," J. Applied Physics, 100 064102 (2006). https://doi.org/10.1063/1.2338836

Cited by

  1. Magnetic and electrical properties of CuFe2O4/BaTiO3 bilayer thin films vol.62, pp.7, 2013, https://doi.org/10.3938/jkps.62.1060
  2. Thin Films vol.465, pp.1, 2014, https://doi.org/10.1080/00150193.2014.894370
  3. Effect of annealing temperature on the magnetoelectric properties of CoFe2O4/Pt/Pb(Zr0.52Ti0.48)O3 multilayer films vol.65, pp.3, 2014, https://doi.org/10.3938/jkps.65.342
  4. Ferroic phase transitions and switching properties of modified BiFeO3–SrTiO3 multiferroic perovskites vol.27, pp.11, 2016, https://doi.org/10.1007/s10854-016-5355-y
  5. -based multiferroics vol.5, pp.14, 2017, https://doi.org/10.1039/C7TC00833C