DOI QR코드

DOI QR Code

Niclosamide induces mitochondria fragmentation and promotes both apoptotic and autophagic cell death

  • Park, So-Jung (Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Shin, Ji-Hyun (Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Kang, Hee (Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Hwang, Jung-Jin (Institute for Innovative Cancer Research, Asan Medical Center) ;
  • Cho, Dong-Hyung (Graduate School of East-West Medical Science, Kyung Hee University)
  • Received : 2011.04.25
  • Accepted : 2011.06.03
  • Published : 2011.08.31

Abstract

Mitochondrial dynamics not only involves mitochondrial morphology but also mitochondrial biogenesis, mitochondrial distribution, and cell death. To identify specific regulators to mitochondria dynamics, we screened a chemical library and identified niclosamide as a potent inducer of mitochondria fission. Niclosamide promoted mitochondrial fragmentation but this was blocked by down-regulation of Drp1. Niclosamide treatment resulted in the disruption of mitochondria membrane potential and reduction of ATP levels. Moreover, niclosamide led to apoptotic cell death by caspase-3 activation. Interestingly, niclosamide also increased autophagic activity. Inhibition of autophagy suppressed niclosamide-induced cell death. Therefore, our findings suggest that niclosamide induces mitochondria fragmentation and may contribute to apoptotic and autophagic cell death.

Keywords

References

  1. Jeong, S. Y. and Seol, D. W. (2008) The role of mitochondria in apoptosis. BMB Rep. 41, 11-22. https://doi.org/10.5483/BMBRep.2008.41.1.011
  2. Liesa, M., Palacín, M. and Zorzano, A. (2009) Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 89, 799-845. https://doi.org/10.1152/physrev.00030.2008
  3. Bossy-Wetzel, E., Barsoum, M. J., Godzik, A., Schwarzenbacher, R. and Lipton, S. A. (2003) Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr. Opin. Cell Biol. 15, 706-716. https://doi.org/10.1016/j.ceb.2003.10.015
  4. Chan, D. C. (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252. https://doi.org/10.1016/j.cell.2006.06.010
  5. Grandemange, S., Herzig, S. and Martinou, J. C. (2009) Mitochondrial dynamics and cancer. Semin. Cancer Biol. 19, 50-56. https://doi.org/10.1016/j.semcancer.2008.12.001
  6. Cho, D. H., Nakamura, T. and Lipton, S. A. (2010) Mitochondrial dynamics in cell death and neurodegeneration. Cell. Mol. Life Sci. 67, 3435-3447. https://doi.org/10.1007/s00018-010-0435-2
  7. Smirnova, E., Griparic, L., Shurland, D. L. and van der Bliek, A. M. (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245-2256. https://doi.org/10.1091/mbc.12.8.2245
  8. Yoon, Y., Pitts, K. R. and McNiven, M. A. (2001) Mammalian dynamin-like protein DLP1 tubulates membranes. Mol. Biol. Cell 12, 2894-2905. https://doi.org/10.1091/mbc.12.9.2894
  9. Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., Smith, C. L. and Youle, R. J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515-525.
  10. Hoppins, S. and Nunnari, J. (2009) The molecular mechanism of mitochondrial fusion. Biochim. Biophys. Acta. 1793, 20-26. https://doi.org/10.1016/j.bbamcr.2008.07.005
  11. Olichon, A., Baricault, L., Gas, N., Guillou, E., Valette, A., Belenguer, P. and Lenaers, G. (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743-7746. https://doi.org/10.1074/jbc.C200677200
  12. Suen, D. F., Norris, K. L. and Youle, R. J. (2008) Mitochondrial dynamics and apoptosis. Genes Dev. 22, 1577-1590. https://doi.org/10.1101/gad.1658508
  13. Gomes, L. C. and Scorrano, L. (2008) High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim. Biophys. Acta. 1777, 860-866. https://doi.org/10.1016/j.bbabio.2008.05.442
  14. Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz, S., Las, G., Alroy, J., Wu, M., Py, B. F., Yuan, J., Deeney, J. T., Corkey, B. E. and Shirihai, O. S. (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446 https://doi.org/10.1038/sj.emboj.7601963
  15. Cassidy-Stone, A., Chipuk, J. E., Ingerman, E., Song, C., Yoo, C., Kuwana, T., Kurth, M. J., Shaw, J. T., Hinshaw, J. E., Green, D. R. and Nunnari, J. (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell 14, 193-204. https://doi.org/10.1016/j.devcel.2007.11.019
  16. Yoon, Y. S., Yoon, D. S., Lim, I. K., Yoon, S. H., Chung, H. Y., Rojo, M., Malka, F., Jou, M. J., Martinou, J. C. and Yoon, G. S. (2006) Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. Cell Physiol. 209, 468-480. https://doi.org/10.1002/jcp.20753
  17. Jin, Y., Lu, Z., Ding, K., Li, J., Du, X., Chen, C., Sun, X., Wu, Y., Zhou, J. and Pan, J. (2010) Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res. 70, 2516-2527. https://doi.org/10.1158/0008-5472.CAN-09-3950
  18. Park, J. P. and Fioravanti, C. F. (2006) Catalysis of NADH$\rightarrow$NADP+ transhydrogenation by adult Hymenolepis diminuta mitochondria. Parasitol. Res. 98, 200-206. https://doi.org/10.1007/s00436-005-0020-z
  19. Balgi, A. D., Fonseca, B. D., Donohue, E., Tsang, T. C., Lajoie, P., Proud, C. G., Nabi, I. R. and Roberge, M. (2009) Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One 22, e7124.
  20. Zorzano, A., Sebastián, D., Segalés, J. and Palacín, M. (2009) The molecular machinery of mitochondrial fusion and fission: an opportunity for drug discovery. Curr. Opin. Drug Discov. Devel. 12, 597-606.
  21. Hom, J. R., Gewandter, J. S., Michael, L., Sheu, S. S. and Yoon, Y. (2007) Thapsigargin induces biphasic fragmentation of mitochondria through calcium-mediated mitochondrial fission and apoptosis. J. Cell Physiol. 212, 498-508. https://doi.org/10.1002/jcp.21051
  22. Gao, P., Bauvy, C., Souquère, S., Tonelli, G., Liu, L., Zhu, Y., Qiao, Z., Bakula, D., Proikas-Cezanne, T., Pierron, G., Codogno, P., Chen, Q. and Mehrpour, M. (2010) The Bcl-2 homology domain 3 mimetic gossypol induces both Beclin 1-dependent and Beclin 1-independent cytoprotective autophagy in cancer cells. J. Biol. Chem. 285, 2570-2581.
  23. Chen, M., Wang, J., Lu, J., Bond, M. C., Ren, X. R., Lyerly, H. K., Barak, L. S. and Chen, W. (2009) The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. Biochemistry 48, 10267-10274. https://doi.org/10.1021/bi9009677
  24. Dai, J. R., Coles, G. C., Wang, W. and Liang, Y. S. (2010) Toxicity of a novel suspension concentrate of niclosamide against Biomphalaria glabrata. Trans. R. Soc. Trop. Med. Hyg. 104, 304-306. https://doi.org/10.1016/j.trstmh.2009.07.015
  25. Lim, M. L., Minamikawa, T. and Nagley, P. (2001) The protonophore CCCP induces mitochondrial permeability transition without cytochrome c release in human osteosarcoma cells. FEBS Lett. 503, 69-74. https://doi.org/10.1016/S0014-5793(01)02693-X
  26. Legros, F., Lombès, A., Frachon, P. and Rojo, M. (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 13, 4343-4354. https://doi.org/10.1091/mbc.E02-06-0330
  27. Galluzzi, L., Larochette, N., Zamzami, N. and Kroemer, G. (2006) Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25, 4812-4830. https://doi.org/10.1038/sj.onc.1209598
  28. Del Poeta, G., Bruno, A., Del Principe, M. I., Venditti, A., Maurillo, L., Buccisano, F., Stasi, R., Neri, B., Luciano, F., Siniscalchi, A., de Fabritiis, P. and Amadori, S. (2008) Deregulation of the mitochondrial apoptotic machinery and development of molecular targeted drugs in acute myeloid leukemia. Curr. Cancer Drug Targets 8, 207-222. https://doi.org/10.2174/156800908784293640
  29. Edinger, A. L. and Thompson C. B. (2004) Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663-669. https://doi.org/10.1016/j.ceb.2004.09.011
  30. Galluzzi, L., Maiuri, M. C., Vitale, I., Zischka, H., Castedo, M., Zitvogel, L. and Kroemer, G. (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 14, 1237-1243. https://doi.org/10.1038/sj.cdd.4402148
  31. Gies, E., Wilde, I., Winget, J. M., Brack, M., Rotblat, B., Novoa, C. A., Balgi, A. D., Sorensen, P. H., Roberge, M. and Mayor, T. (2010) Niclosamide prevents the formation of large ubiquitin-containing aggregates caused by proteasome inhibition. PLoS One 5, e14410. https://doi.org/10.1371/journal.pone.0014410

Cited by

  1. De Novo Transcriptome Analysis of Oncomelania hupensis after Molluscicide Treatment by Next-Generation Sequencing: Implications for Biology and Future Snail Interventions vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0118673
  2. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction vol.449, pp.4, 2014, https://doi.org/10.1016/j.bbrc.2014.05.030
  3. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer vol.71, 2016, https://doi.org/10.1016/j.biocel.2015.11.014
  4. Molecular mechanisms of antitumor activity of niclosamide vol.9, pp.4, 2015, https://doi.org/10.1134/S1990750815040022
  5. Contribution of silver ions to the inhibition of infectivity of Schistosoma japonicum cercariae caused by silver nanoparticles vol.140, pp.05, 2013, https://doi.org/10.1017/S0031182012002211
  6. A new system for quality control in hematopoietic progenitor cell units before reinfusion in autologous transplant vol.54, pp.3, 2014, https://doi.org/10.1111/trf.12307
  7. Mitochondrial fragmentation caused by phenanthroline promotes mitophagy vol.586, pp.24, 2012, https://doi.org/10.1016/j.febslet.2012.10.035
  8. Molecular mechanisms of niclosamide antitumor activity vol.61, pp.6, 2015, https://doi.org/10.18097/pbmc20156106680
  9. Sensitivity of the invasive bivalve Corbicula fluminea to candidate control chemicals: The role of dissolved oxygen conditions vol.536, 2015, https://doi.org/10.1016/j.scitotenv.2015.07.071
  10. Niclosamide enhances ROS-mediated cell death through c-Jun activation vol.68, pp.5, 2014, https://doi.org/10.1016/j.biopha.2014.03.018
  11. Combined niclosamide with cisplatin inhibits epithelial-mesenchymal transition and tumor growth in cisplatin-resistant triple-negative breast cancer vol.37, pp.7, 2016, https://doi.org/10.1007/s13277-015-4650-1
  12. Antihelminthic drug niclosamide inhibits CIP2A and reactivates tumor suppressor protein phosphatase 2A in non-small cell lung cancer cells 2017, https://doi.org/10.1016/j.bcp.2017.08.009
  13. Metabolism of the anthelmintic drug niclosamide by cytochrome P450 enzymes and UDP-glucuronosyltransferases: metabolite elucidation and main contributions from CYP1A2 and UGT1A1 vol.46, pp.1, 2016, https://doi.org/10.3109/00498254.2015.1047812
  14. Bionanotherapeutics: niclosamide encapsulated albumin nanoparticles as a novel drug delivery system for cancer therapy vol.5, pp.16, 2015, https://doi.org/10.1039/C4RA15233F
  15. Parkin induces apoptotic cell death in TNF-α-treated cervical cancer cells vol.45, pp.9, 2012, https://doi.org/10.5483/BMBRep.2012.45.9.104
  16. Identification of vascular disruptor compounds by analysis in zebrafish embryos and mouse embryonic endothelial cells vol.70, 2017, https://doi.org/10.1016/j.reprotox.2016.11.005
  17. Small molecule modulators of Wnt/β-catenin signaling vol.23, pp.7, 2013, https://doi.org/10.1016/j.bmcl.2013.01.101
  18. Imidazolium-derived ionic salts induce inhibition of cancerous cell growth through apoptosis vol.5, pp.9, 2014, https://doi.org/10.1039/C4MD00161C
  19. Niclosamide induces protein ubiquitination and inhibits multiple pro-survival signaling pathways in the human glioblastoma U-87 MG cell line vol.12, pp.9, 2017, https://doi.org/10.1371/journal.pone.0184324
  20. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug vol.349, pp.1, 2014, https://doi.org/10.1016/j.canlet.2014.04.003
  21. Altered Gene Expression in the Schistosome-Transmitting Snail Biomphalaria glabrata following Exposure to Niclosamide, the Active Ingredient in the Widely Used Molluscicide Bayluscide vol.9, pp.10, 2015, https://doi.org/10.1371/journal.pntd.0004131
  22. CYP1A1 and Cnr nitroreductase bioactivated niclosamide in vitro vol.28, pp.6, 2013, https://doi.org/10.1093/mutage/get043
  23. Crystal Engineering of Pharmaceutical Co-crystals: “NMR Crystallography” of Niclosamide Co-crystals vol.16, pp.6, 2016, https://doi.org/10.1021/acs.cgd.5b01619
  24. Insight into the fission mechanism by quantitative characterization of Drp1 protein distribution in the living cell vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-26578-z