DOI QR코드

DOI QR Code

Development of Evaluation Technique for Hydrogen Embrittlement Behavior of Metallic Materials Using in-situ SP Testing under Pressurized Hydrogen Gas Conditions

고압수소가스하 in-situ SP시험법을 사용한 금속재료의 수소취화거동 평가기법 개발

  • Received : 2010.12.14
  • Accepted : 2011.08.30
  • Published : 2011.11.01

Abstract

Recently, alternative and novel energy resources have been developed for use in the future because of the current environmental problems and exhaustion of fossil energy resources. Hydrogen energy has many merits, such as its environmental friendliness, easy storage, and easy production, but it also has disadvantages, in that it is highly combustible and explosive. In this study, a test procedure using a simple SP test under highly pressurized hydrogen gas conditions was established. In order to evaluate its applicability, SP tests were carried out using a stainless steel (SUS316L) sample under atmospheric, pressurized helium, and pressurized hydrogen gas conditions. The results under the pressurized hydrogen gas condition showed fissuring and produced a reduction of the elongation in the plastic instability region due to hydrogen embrittlement, showing the effectiveness of the current in-situ SP test.

최근, 화석연료의 고갈과 환경오염의 문제로 인해 차세대 신재생 에너지에 대한 관심이 증대되고 있다. 그 중 수소연료는 친환경, 저장의 용이, 손쉬운 제조 등과 같은 장점에 반해 가연범위가 넓고, 폭발의 위험성이 단점으로 대두되고 있다. 본 연구에서는 간편한 SP 시험법을 이용하여 고압수소가스 분위기 하에서 in-situ 수소취화거동을 평가할 수 있는 시험기법을 확립하고자 한다. 그 적용성을 평가하기 위해서 수소저장용기 재료로 사용되는 스테인리스강(SUS316L)을 사용하여 대기압, 고압 헬륨 및 수소가스 분위기에서 시험하였다. 실험결과, 고압 수소가스 분위기에서는 수소 침투로 인해, 대기압 및 헬륨가스 분위기하에서와 달리, 시험편 표면에 미세균열 발생과 하중-변위 선도상 소성불안정 변형 영역에서 연신율 감소를 가져왔고, 파면관찰 결과 수소취화 균열이 관찰되어 SP시험법의 유효성을 나타내었다.

Keywords

References

  1. http://www.nedo.go.jp/informations/other/200716_1/200716_1.html.
  2. Michler, T., Lee, Y., Gangloff, R. P. and Naumann, J., 2009, "Influence of Macro Segregation on Hydrogen Environment Embrittlement of SUS 316L Stainless Steel," Int.J. Hydrogen Energy, Vol. 34, pp. 3201-3209. https://doi.org/10.1016/j.ijhydene.2009.02.015
  3. Zhang, L., Wen, M., Imade, M., Fukuyama, S. and Yokogawa, K., "Effect of Nickel Equivalent on Hydrogen Gas Embrittlement of Austenitic Stainless Steels based on Type 316 at Low Temperatures," Acta Mater., Vol. 56, pp. 3414-3421
  4. Jang, S.-Y. and Yoon, K.-B., 2009, "Study on Hydrogen Embrittlement for API 5L X65 Steel Using Small Punch Test I : Base Metal," Journal of Energy Engineering, Vol. 18, No. 1, pp. 49-55.
  5. Jang, S.-Y. and Yoon, K.-B., 2009, "Study on Hydrogen Embrittlement for API 5L X65 Steel Using Small Punch Test I : Weld Metal," Journal of Energy Engineering, Vol. 18, No. 1, pp. 56-62.
  6. Ogata, T., 2007, "Hydrogen Embrittlement Evaluation in Tensile Properties of Stainless Steels at cryogenic Temperatures," Adv. Cryo. Eng., Vol. 54, pp. 124-131
  7. Ogata, T., 2008, "Evaluation of Hydrogen Embrittlement by Internal High-Pressure Hydrogen Environment in Specimen," J. Jpn. Inst. Met. Vol. 72, pp. 125-131. https://doi.org/10.2320/jinstmet.72.125
  8. Lee, Y.-H., Lee, H. M., Kim, Y.-I. and Nahm, S.-H., 2011, "Mechanical Degradation of API X65 Pipeline Steel by Exposure to Hydrogen Gas," Metals Materials Int., Vol. 17, pp. 389-395. https://doi.org/10.1007/s12540-011-0614-1
  9. Kim, J. K., Lee, J. K., Yoon, K. B. and Chung, S. H., 1991, "Study on Evaluation by Small Punch Test for Material Degradation of Steam Tubes of Fossil Electric Power Plant," Trans. of the KSME, Vol. 15, pp.1665-1673.
  10. Fujii, H. and Ohmiya, S., 2009, "Effects of Ni and Cr Contents on Hydrogen Environmental Embrittlement in Type 316 based Stainless Steels," J. High Pressure Institute of Japan, Vol. 47, pp. 85-94.
  11. Michler, T. and Naumann, J., 2009, "Coatings to Reduce Hydrogen Environment Embrittlement of 304 Austenitic Stainless Steel," Surface and Coatings Technology, Vol. 203, pp. 1819-1828. https://doi.org/10.1016/j.surfcoat.2009.01.013

Cited by

  1. Influence of Punch Velocity on Gas Hydrogen Embrittlement Behaviors in SA372 Steel vol.37, pp.12, 2013, https://doi.org/10.3795/KSME-A.2013.37.12.1497
  2. A Study on the VHCF Fatigue Behaviors of Hydrogen Attacked Inconel 718 Alloy vol.40, pp.7, 2016, https://doi.org/10.3795/KSME-A.2016.40.7.637
  3. Very High Cycle Fatigue Behaviors and Surface Crack Growth Mechanism of Hydrogen-Embrittled AISI 304 Stainless Steels vol.09, pp.04, 2018, https://doi.org/10.4236/msa.2018.94027