Development of Biomass Allometric Equations for Pinus densiflora in Central Region and Quercus variabilis

중부지방소나무 및 굴참나무의 바이오매스 상대생장식 개발

  • Son, Yeong-Mo (Div. of Forest management, Korea Forest Research Institute) ;
  • Lee, Kyeong-Hak (Div. of Forest management, Korea Forest Research Institute) ;
  • Pyo, Jung-Kee (Div. of Forest management, Korea Forest Research Institute)
  • Received : 2011.06.28
  • Accepted : 2011.08.25
  • Published : 2011.08.31

Abstract

The objective of this research is to develop biomass allometric equation for Pinus densiflora in central region and Quercus variabilis. To develop the biomass allometric equation by species and tree component, data for Pinus densiflora in central region is collected to 30 plots (70 trees) and for Quercus variabilis is collected to 15 plots (32 trees). This study is used two independent values; (1) one based on diameter beast height, (2) the other, diameter beast height and height. And the equation forms were divided into exponential, logarithmic, and quadratic functions. The validation of biomass allometric equations were fitness index, standard error of estimate, and bias. From these methods, the most appropriate equations in estimating total tree biomass for each species are as follows: $W=aD^b$, $W=aD^bH^c$; fitness index were 0.937, 0.943 for Pinus densiflora in central region stands, and $W=a+bD+cD^2$, $W=aD^bH^c$; fitness index were 0.865, 0.874 for Quercus variabilis stands. in addition, the best performance of biomass allometric equation for Pinus densiflora in central region is $W=aD^b$, and Quercus variabilis is $W=a+bD+cD^2$. The results of this study could be useful to overcome the disadvantage of existing the biomass allometric equation and calculate reliable carbon stocks for Pinus densiflora in central region and Quercus variabilis in Korea.

본 연구의 목적은 중부지방소나무와 굴참나무의 부위별 바이오매스 상대생장식 개발에 있다. 부위별 상대생장식의 개발을 위하여 축적 및 임분의 구조를 고려하여 중부지방소나무에서 30개소 (70그루), 굴참나무에서 15개소 (32그루)를 선정하고 시료를 수집하였다. 바이오매스의 추정에 이용된 인자는 흉고직경, 흉고직경과 수고를 이용하는 두 가지이며, 지수식, 대수식, 2차방정식의 형태로 구분하였다. 최적의 상대생장식을 도출하기 위하여 이용된 통계량은 적합도지수 (FI), 잔차의 평균 (Bias), 잔차의 표준오차 (SEE)이다. 이를 통하여 추정된 수종별 바이오매스 상대생장식은 중부지방소나무에서 $W=aD^b$, $W=aD^bH^c$ 식이 적합하며 적합도는 0.937, 0.943이다. 반면, 굴참나무는 $W=a+bD+cD^2$, $W=aD^bH^c$ 식이 적합하며 적합도는 0.865, 0.874이다. 또한, 중부지방소나무와 굴참나무의 부위별 바이오매스 상대생장식은 중부지방소나무 $W=aD^b$ 이고, 굴참나무 $W=a+bD+cD^2$ 으로 나타났다. 본 연구의 결과로 제시된 중부지방소나무, 굴참나무의 바이오매스 상대생장식은 일부지역에 국한되어 개발되었던 상대생장식에 대한 단점을 보완할 수 있을 것이며 이들 수종에 대한 탄소량의 계정에 활용이 가능할 것이다.

Keywords

References

  1. Avery, T. E. and H. E. Burkhart. 2002. Forest Measurements. 5th Edition. McGraw- Hill, INC. pp. 321-347.
  2. Alban, D. H., D. A. Pelara, and B. E. Schlaegel. 1978. Biomass and nutrient distribution in aspen, pine and spruce stands on the same soil type in Minnesota. Can. J. For. Res. 8: 290-299. https://doi.org/10.1139/x78-044
  3. Clutter, J. L., J. C. Fortson, L. V. Pienaar, G. H. Brister, and R. L. Bailey. 1983. Timber Management - A Quantitive Approach. John Wiley and Sons. pp. 31-58.
  4. Husch, B., T. W. Beers, and J. A. Jr. Kershaw. 2003. Forest Mensuration. Kohn Wiley and Sons, INC. pp. 162-201.
  5. IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 1. General Guidance and Reporting. IPCC National Greenhouse Gas Inventory Programme. Institute for Global Environmental Strategies. pp. 3.6-3.78.
  6. IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4. Agriculture, Forestry and Other Land Use. IPCC National Greenhouse Gas Inventory Programme. Institute for Global Environmental Strategies. pp. 4.73.
  7. Kim, K. D. and C. M. Kim. 1988. Research trends on forest biomass production in Korea. J. Korean For. Engin. 8: 94-107.
  8. Kim, S. Y. and J. Y. Jeong. 1985. A study on the production structure and biomass productivity of Quercus variabilis natural forest. Jour. Korean For. Soc. 70: 91-102.
  9. Korea Forest Research Institute. 2010. Survey manual for biomass and soil carbon. Korea Forest Research Institute. pp. 74.
  10. Parde, J. 1980. Forest Biomass. Forestry Abstracts 41: 343-362.
  11. Park, I. H. and G. S. Moon. 1994. Biomass, net production and biomass estimation equations in some natural Quercus forests. Jour. Korean For. Soc. 83: 246-253.
  12. Park, I. H., Y. K. Seo, D. Y. Kim, Y. H. Son, M. J. Yi, and H. O. Jin. 2003. Biomass and net production of a Quercus mongolica stand and a Quercus variabilis stand in Chuncheon, Kangwon-do. Jour. Korean For. Soc. 92: 52-57.
  13. Park, G. S. and S. W. Lee. 2001. Biomass and net primary production of Quercus variabilis natural forest ecosystems in Gongju, Pohang, and Yangyang areas. Jour. Korean For. Soc. 90: 692-698.
  14. SAS Institute, Inc. 2006. SAS/STAT 9.1.3 User′s Guide. SAS Institute, Inc. Cary. NC.
  15. Son, Y. M., K. H. Lee, and R. H. Kim. 2007. Estimation of biomass in Korea. Jour. Korean For. Soc. 96: 477-482.
  16. Son, Y., I. H. Park, M. J. Yi, H. O. Jin, D..Y. Kim, R. H. Kim, and J. O. Hwang. 2004. Biomass, production and nutrient distribution of a natural oak forest in central Korea. Ecol. Res. 19: 21-28. https://doi.org/10.1111/j.1440-1703.2003.00617.x
  17. Song, C. Y. and S. W. Lee. 1996. Biomass and net primary productivity in natural forests of Quercus mongolica and Quercus variabilis. Jour. Korean For. Soc. 85.: 443- 452.
  18. Song, C. Y., K. S. Chang, K. S. Park, and S. W. Lee. 1996. Analysis of carbon fixation in natural forests of Quercus mongolica and Quercus variabilis. Jour. Korean For. Soc. 86: 35-45.
  19. Whittaker, R. H. and P. L. Marks. 1975. Methods of assessing terrestrial productivity. In: Primary Productivity of the Biosphere. Springer-Verlag, New York. pp. 55-118.