DOI QR코드

DOI QR Code

Foaming Behavior, Structure, and Properties of Rubber Nanocomposites Foams Reinforced with Zinc Methacrylate

아연 메타아크릴레이트로 보강된 발포고무 나노복합체의 발포거동, 구조 및 특성

  • Basuli, U. (Energy Harvesting WCU Research Team) ;
  • Lee, G.B. (Energy Harvesting WCU Research Team) ;
  • Jang, S.Y. (BIN Fusion Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Oh, J. (Energy Harvesting WCU Research Team) ;
  • Lee, J.H. (Energy Harvesting WCU Research Team) ;
  • Kim, S.C. (TaeSung Polytec Co., Ltd.) ;
  • Jeon, N.D. (TaeSung Polytec Co., Ltd.) ;
  • Huh, Y.I. (Department of Polymer and Fiber System Engineering, Chonnam National University) ;
  • Nah, C. (Energy Harvesting WCU Research Team)
  • Received : 2012.08.20
  • Accepted : 2012.09.17
  • Published : 2012.12.31

Abstract

Different amounts of foaming agents were employed in natural rubber(NR)/butadiene rubber(BR) blends to understand the foaming behavior in presence of nano-reinforcing agent, zinc methacrylate (ZMA). The ZMA greatly improved most of the mechanical properties of the rubber foams, however it did not show considerable effect on the cell morphology, such as cell size, density and porosity. It was also observed that the foaming agent concentration affected all the mechanical parameters. When the content of foaming agent was increased, the number of foams was increased leading to a decrease in density of the compounds. But the size and distribution of foams remained unchanged with increased foaming agent. The effect of high styrene-butadiene rubber (HSBR) was also studied. The size of cells became smaller and the cell uniformity was improved with increasing HSBR. The foam rubber compounds showed much efficient energy absorbing capability at higher strains.

나노보강제의 하나인 아연 메타아크릴레이트 (ZMA)로 보강된 천연고무(NR)/부타디엔고무(BR) 블랜드에 발포제 함량을 달리하여 적용하여 발포거동을 관찰하였다. ZMA 첨가에 따라 전반적인 발포고무의 물성은 향상되었지만, 발포입자크기, 밀도, 발포도 등 발포입자의 모폴로지에는 크게 영향을 미치지 않았다. 발포제의 함량에 따라 발포고무의 기계적 물성은 크게 영향을 받는 것으로 나타났다. 발포제 함량 증가에 따라 발포도가 증가하였고, 이는 발포고무의 밀도감소로 나타났지만, 발포입자의 크기나 분산성은 크게 영향을 받지 않았다. 고함량 스티렌-부타디엔 고무(HSBR)의 영향도 함께 조사하였다. HSBR 함량 증가에 따라 발포입자의 크기는 작아졌고 분산성은 향상되었다. 발포고무는 대변형에서 에너지 흡수성이 뛰어난 것으로 나타났다.

Keywords

References

  1. M. A. Rodriguez-Perez, "Crosslinked polyolefin foams: production, structure, properties, and applications", Adv. Polym. Sci., 184, 97 (2005). https://doi.org/10.1007/b136244
  2. J. I. Velasco, M. Antunes, O. Ayyad, J. M. Lopez-Cuesta, P. Gaudon, C. Saiz-Arroyo, M. A. Rodriguez-Perez, and J. A. de Saja, "Foaming behaviour and cellular structure of LDPE/hectorite nanocomposites", Polymer, 48, 2098 (2007). https://doi.org/10.1016/j.polymer.2007.02.008
  3. M. Antunes, V. Realinho, and J. I. Velasco, "Foaming Behaviour, Structure, and Properties of Polypropylene Nanocomposites Foams", J. Nanomater., doi:10.1155/2010/306384 (2010).
  4. L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen, and G. Xu, "Polymer nanocomposite foams", Compos. Sci. Technol., 65, 2344 (2005). https://doi.org/10.1016/j.compscitech.2005.06.016
  5. M. Antunes, V. Realinho, and J. I. Velasco, "Foaming Behaviour, Structure, and Properties of Polypropylene Nanocomposites Foams", J. Nanomater., 2010, 1 (2010).
  6. C. Zeng, X. Han, L. J. Lee, K. W. Koelling, and D. L. Tomasko, "Polymer-clay nanocomposite foams prepared using carbon dioxide", Adv. Mater., 15, 1743 (2003). https://doi.org/10.1002/adma.200305065
  7. Y. Di, S. Iannace, E. Di Maio, and L. Nicolais, " Poly(lactic acid)/organoclay nanocomposites: thermal, rheological properties and foam processing", J. Polym. Sci. B, 43, 689 (2005). https://doi.org/10.1002/polb.20366
  8. X. Han, C. Zeng, L. J. Lee, K. W. Koelling, and D. L. Tomasko, "Extrusion of polystyrene nanocomposite foams with supercritical $CO_{2}$", Polym. Eng. Sci., 43, 1261 (2003). https://doi.org/10.1002/pen.10107
  9. M. Okamoto, P. H. Nam, P. Maiti, T. Kotaka, T. Nakayama, M. Takada, M. Ohshima, A. Usuki, N. Hasegawa, and H. Okamoto, "Biaxial flowinduced alignment of silicate layers in polypropylene/clay nanocomposite foam", Nano Lett., 1, 503 (2001). https://doi.org/10.1021/nl010051+
  10. A. E. Lawindy, K. M. A. El-Kade, W. E. Mahmoud, and H. H. Hassan, "Physical studies of foamed reinforced rubber composites Part I. Mechanical properties of foamed ethylene propylene-diene terpolymer and nitrile-butadiene rubber composites", Polym. Int., 51, 601 (2002). https://doi.org/10.1002/pi.916
  11. H. M. Da Costa, L. L. Y. Visconte, R. C. R. Nunes, and C. R. G. Furtado, "Use of Rice Husk Ash as Filler in Natural Rubber Vulcanizate: In comparison with Other Commercial Fillers", J. Appl. Polym. Sci., 83, 2331 (2002). https://doi.org/10.1002/app.10125
  12. P. L. The, Z. A. Mohd Ishak, A. S. Hashim, J. Karger-Kocsis, and U. S. Ishiaku, "On the potential of organoclay with respect to conventional fillers (carbon black, silica) for epoxidized natural rubber compatibilized natural rubber vulcanizates", J. Appl. Polym. Sci., 94, 2438 (2004). https://doi.org/10.1002/app.21188
  13. N. Nagata, T. Sato, T. Fujii, and Y. Saito, "Structure and mechanical properties of hydrogenated NBR/zinc dimethacrylate vulcanizates", J. Appl. Polym. Sci. symp., 53, 103 (1994).
  14. Y. Lu, L. Liu, C. Yang, M. Tian, and L. Zhang, "The morphology of zinc dimethacrylate reinforced elastomers investigated by SEM and TEM", Eur. Polym. J., 41, 577 (2005). https://doi.org/10.1016/j.eurpolymj.2004.10.019
  15. J. W. Lee, H. S. Joo, S. C. Kang, and Y. W. Chang, "Effect of zinc dimethacrylate on mechanical properties of dynamically vulcanized polypropylene(PP) and nitrile rubber(NBR) blends", Elastomer, 41, 245 (2006).
  16. Y. Lu, L. Liu, D. Shen, C. Yang, and L. Zhang, "Infrared study on in situ polymerization of zinc dimethacrylate in poly (${\alpha}$-octylene-co-ethylene) elastomer", Polym. Int., 53, 802 (2004). https://doi.org/10.1002/pi.1462
  17. Y. Lu, L. Liu, M. Tian, H. Geng, and L. Zhang, "Study on mechanical properties of elastomers reinforced by zinc dimethacrylate", Eur. Polym. J., 41, 589 (2005). https://doi.org/10.1016/j.eurpolymj.2004.10.012
  18. A. Du, Z. Peng, Y. Zhang, and Y. Zhang, " Polymerization conversion and structure of magnesium methacrylate in ethylene- vinyl acetate rubber vulcanizates", J. Appl. Polym. Sci., 93, 2379 (2004). https://doi.org/10.1002/app.20583
  19. W. S. Jin, H. S. Lee, and C. Nah, "Preparation and physical properties of acrylonitrile-butadiene rubber nanocomposites filled with zinc dimethacrylate", Polymer (Korea), 28, 185 (2004).
  20. J. H. Won, H. S. Joo, and Y. W. Chang, "Preparation and Properties of EPDM/Zinc Methacrylate Hybrid Composites", Elastomer, 40, 59 (2005).
  21. Z. Peng, X. Liang, Y. Zhang and Y. Zhang, "Reinforcement of EPDM by in situ prepared zinc dimethacrylate", J. Appl. Polym. Sci., 84, 1339 (2002). https://doi.org/10.1002/app.10112
  22. X. Yuan, Z. Peng, Y. Zhang, and Y. Zhang, "In situ preparation of zinc salts of unsaturated carboxylic acids to reinforce NBR", J. Appl. Polym. Sci., 77, 2740 (2000). https://doi.org/10.1002/1097-4628(20000919)77:12<2740::AID-APP220>3.0.CO;2-X
  23. X. Yuan, Y. Zhang, Z. Peng, and Y. Zhang, "In situ preparation of magnesium methacrylate to reinforce NBR", J. Appl. Polym. Sci., 84, 1403 (2002). https://doi.org/10.1002/app.10323
  24. A. Du, Z. Peng, Y. Zhang, and Y. Zhang, "Polymerization conversion and structure of magnesium methacrylate in ethylene- vinyl acetate rubber vulcanizates", J. Appl. Polym. Sci., 93, 2379 (2004). https://doi.org/10.1002/app.20583
  25. T. Ikeda, S. Sakurai, K. Nakano, and B. Yamada, "Copolymerization of zinc methacrylate and perfluoroalkyl acrylate in hydrocarbon medium", J. Appl. Polym. Sci., 59, 781 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960131)59:5<781::AID-APP4>3.0.CO;2-S
  26. T. Ikeda and B. Yamada, "Simulation of the in situ copolymerization of zinc methacrylate and 2-(N-ethylperfluoro-octanesulphonamido) ethyl acrylate in hydrogenated nitrile-butadiene rubber", Polym. Int., 48, 367 (1999). https://doi.org/10.1002/(SICI)1097-0126(199905)48:5<367::AID-PI143>3.0.CO;2-Q
  27. K. Horiuchi and A. Hamada, "Golf ball", Europe Patent, 0,582,487 A1, September 2, 1994.
  28. D. S. Granatowicz, M. T. Morris, M. V. Pilkington, and G. R. Tompkin, "High modulus belt compostion and belts made therewith", Europe Patent, 0,864,607 A1, September 16, 1998.
  29. Y. Keisaku, I. Kiyoshi, and K. Junichi, "Rubber composition", Europe Patent, 0,589,701 A1, March 30, 1994.
  30. R. M. Freeman, W. L. Hergenrother, and F. J. Ravagnani, "High modulus low hysteresis rubber compound for pneumatic tires", US Patent, 5,464,899 A, November 7, 1995.
  31. Z. M. Ariff, Z. Zakaria, L. H. Tay, and S. Y. Lee, "Effect of foaming temperature and rubber grades on properties of natural rubber foams", J. Appl. Polym. Sci., 107, 2531 (2008). https://doi.org/10.1002/app.27375
  32. J. H. Kim, K. C. Choi, J. M. Yoon, and S. Y. Kim, "Effects of Foaming temperature and carbon black content on the cure behaviors and foaming characteristics of the natural rubber foams", Elastomer, 41, 147 (2006).
  33. E. S. Park, "Mechanical properties and antibacterial activity of peroxide-cured silicone rubber foams", J. Appl. Polym. Sci., 110, 1723 (2008). https://doi.org/10.1002/app.28750
  34. G. Li and M. John, "A Crumb Rubber Modified Syntactic Foam", Mater. Sci. Eng. A, 474, 390 (2008). https://doi.org/10.1016/j.msea.2007.04.029
  35. G. Li and N. Jones, "Development of Rubberized Syntactic Foam", Composites Part A, 38, 1483 (2007). https://doi.org/10.1016/j.compositesa.2007.01.009
  36. R. Maharsia, N. Gupta, and H. D. Jerro, "Investigation of flexural strength properties of rubber and nanoclay reinforced hybrid syntactic foams", Mater. Sci. Eng. A, 417, 249 (2006). https://doi.org/10.1016/j.msea.2005.10.063
  37. J. H. Kim, K. C. Choi, and J. M. Yoon, "The Foaming Characteristics and Physical Properties of Natural Rubber Foams: Effects of Carbon Black Content and Foaming Pressure", J. Ind. Eng. Chem., 12, 795 (2006).
  38. H. Jin, W. Y. Lu, S. Scheffel, M. K. Neilsen, and T. D. Hinnerichs, "Characterization of Mechanical Behavior of Polyurethane Foams using Digital Image Correlation", 2005 ASME International Mechanical Engineering Congress & Exposition, Nov. 5-11, Orlando, FL, USA.
  39. Z. Xiao, R. Guan, Y. Jiang, and Y. Li, "Tensile property of thin microcellular PC sheets prepared by compression molding", eXPRESS Polym. Lett., 1, 217 (2007). https://doi.org/10.3144/expresspolymlett.2007.33
  40. S. M. Kang, S. J. Lee, and B. K. Kim, "Shape memory polyurethane foams", eXPRESS Polym. Lett., 6, 63 (2012). https://doi.org/10.3144/expresspolymlett.2012.7
  41. Z. Wang and T. J. Pinnavaia, "Nanolayer reinforcement of elastomeric polyurethane", Chem. Mater., 10, 3769 (1998). https://doi.org/10.1021/cm980448n
  42. J. H. Chang and Y. U. An, "Nanocomposites of polyurethane with various organoclays: thermomechanical properties, morphology, and gas permeability", J. Polym. Sci. Part B Polym. Phys., 40, 670 (2002). https://doi.org/10.1002/polb.10124
  43. Y. I. Tien and K. H. Wei, "High-tensile-property layered silicates/ polyurethane nanocomposites by using reactive silicates as pseudo chain extenders", Macromolecules, 34, 9045 (2001). https://doi.org/10.1021/ma010551p
  44. T. K. Chen, Y. I. Tien, and K. H. Wei, "Synthesis and characterization of novel segmented polyurethane/clay nanocomposites", Polymer, 41, 1345 (2000). https://doi.org/10.1016/S0032-3861(99)00280-3
  45. X. Cao, L. J. Lee, T. Widya, and C. Macosko, "Polyurethane/ clay nanocomposites foams: processing, structure and properties", Polymer, 46, 775 (2005). https://doi.org/10.1016/j.polymer.2004.11.028
  46. Y. Lu, L. Liu, D. Shen, C. Yang, and L. Zhang, "Infrared study on in situ polymerization of zinc dimethacrylate in poly (${\alpha}$-octylene-co-ethylene) elastomer", Polym. Int., 53, 802 (2004). https://doi.org/10.1002/pi.1462
  47. Z. Peng, X. Liang, Y. Zhang, and Y. Zhang, "Reinforcement of EPDM by in situ prepared zinc dimethacrylate", J. Appl. Polym. Sci., 84, 1339 (2002). https://doi.org/10.1002/app.10112
  48. H. D. Chae, U. Basuli, J. H. Lee, C. I. Lim, R. H. Lee, S. C. Kim, N. D. Jeon, and C. Nah, "Study on Mechanical and Thermal Properties of Rubber Composites Reinforced by Zinc Methacrylate and Carbon Black", Polym. Compos., 2012, DOI 10.1002/pc.22242.
  49. S. Kaang, W. Jin, M. A. Kader, C. Nah, "Effects of blend composition and mixing method on mechanical and morphological properties of zinc dimethacrylate-reinforced acrylonitrile- butadiene copolymer nanocomposites.", Polym. Plast. Technol., 43, 1517 (2004).
  50. W. S. Kim, W. D. Kim, and S. I. Hong, "Fatigue life prediction of automotive rubber component subjected to a variable amplitude loading", Elastomer, 42, 209 (2007).
  51. C. Park and S. R. Nutt, "PM synthesis and properties of steel foams", Mater. Sci. Eng. A, 288, 111 (2000). https://doi.org/10.1016/S0921-5093(00)00761-9
  52. T. Mukai, H. Kanahashi, T. Miyoshi, M. Mabuchi, T. G. Nieh, and K. Higashi, "Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading", Scripta Mater., 40, 921 (1999). https://doi.org/10.1016/S1359-6462(99)00038-X
  53. C. J. Yu, H. H. Eiferet, J. Banhart, and J. Baumeister, "Metal foams", Adv. Mater. Processes, 11, 45 (1998).

Cited by

  1. Effect of plasticizer and curing system on freezing resistance of rubbers vol.131, pp.2, 2013, https://doi.org/10.1002/app.39795
  2. A study of graphene oxide-reinforced rubber nanocomposite vol.131, pp.16, 2014, https://doi.org/10.1002/app.40640
  3. Effect of Changing of Filling Materials in NR-SBR Type Elastomer Based Rubber Materials on Mechanical Properties vol.38, pp.5, 2014, https://doi.org/10.7317/pk.2014.38.5.664