DOI QR코드

DOI QR Code

T-STRUCTURE AND THE YAMABE INVARIANT

  • Sung, Chan-Young (Department of Mathematics and Institute for Mathematical Sciences Konkuk University)
  • Received : 2010.12.23
  • Published : 2012.03.31

Abstract

The Yamabe invariant is a topological invariant of a smooth closed manifold, which contains information about possible scalar curvature on it. It is well-known that a product manifold $T^m{\times}B$ where $T^m$ is the m-dimensional torus, and B is a closed spin manifold with nonzero $\^{A}$-genus has zero Yamabe invariant. We generalize this to various T-structured manifolds, for example $T^m$-bundles over such B whose transition functions take values in Sp(m, $\mathbb{Z}$) (or Sp(m - 1, $\mathbb{Z}$) ${\oplus}\;{{\pm}1}$ for odd m).

Keywords

References

  1. M. T. Anderson, Canonical metrics on 3-manifolds and 4-manifolds, Asian J. Math. 10 (2006), no. 1, 127-163. https://doi.org/10.4310/AJM.2006.v10.n1.a8
  2. M. Atiyah and J. Berndt, Projective planes, Severi varieties and spheres, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002), 1-27.
  3. J. Cheeger and M. Gromov, Collapsing Riemannian manifolds while keeping their cur- vature bounded I, J. Differential Geom. 23 (1986), no. 3, 309-346. https://doi.org/10.4310/jdg/1214440117
  4. J. Cheeger and M. Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded II, J. Differential Geom. 32 (1990), no. 1, 269-298. https://doi.org/10.4310/jdg/1214445047
  5. M. Gromov and H. B. Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Etudes Sci. Publ. Math. No. 58 (1983), 83-196.
  6. M. J. Gursky and C. LeBrun, Yamabe invariants and spinc structures, Geom. Funct. Anal. 8 (1998), no. 6, 965-977. https://doi.org/10.1007/s000390050120
  7. M. Ishida and C. LeBrun, Curvature, connected sums, and Seiberg-Witten theory, Comm. Anal. Geom. 11 (2003), no. 5, 809-836. https://doi.org/10.4310/CAG.2003.v11.n5.a1
  8. O. Kobayashi, Scalar curvature of a metric with unit volume, Math. Ann. 279 (1987), no. 2, 253-265. https://doi.org/10.1007/BF01461722
  9. H. B. Lawson and M. L. Michelson, Spin Geometry, Priceton University Press, 1989.
  10. C. LeBrun, Four manifolds without Einstein metrics, Math. Res. Lett. 3 (1996), no. 2, 133-147. https://doi.org/10.4310/MRL.1996.v3.n2.a1
  11. C. LeBrun, Yamabe constants and the perturbed Seiberg-Witten equations, Comm. Anal. Geom. 5 (1997), no. 3, 535-553. https://doi.org/10.4310/CAG.1997.v5.n3.a6
  12. C. LeBrun, Kodaira dimension and the Yamabe problem, Comm. Anal. Geom. 7 (1999), no. 1, 133-156. https://doi.org/10.4310/CAG.1999.v7.n1.a5
  13. J. Lee and T. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37-91. https://doi.org/10.1090/S0273-0979-1987-15514-5
  14. G. P. Paternain and J. Petean, Minimal entropy and collapsing with curvature bounded from below, Invent. Math. 151 (2003), no. 2, 415-450. https://doi.org/10.1007/s00222-002-0262-7
  15. J. Petean and G. Yun, Surgery and the Yamabe invariant, Geom. Funct. Anal. 9 (1999), no. 6, 1189-1199. https://doi.org/10.1007/s000390050112
  16. C. Sung, Connected sums with $HP^{n}$ or $CaP^{2}$ and the Yamabe invariant, arXiv:0710.2379.
  17. C. Sung, Surgery and equivariant Yamabe invariant, Differential Geom. Appl. 24 (2006), no. 3, 271-287. https://doi.org/10.1016/j.difgeo.2005.09.002
  18. C. Sung, Surgery, Yamabe invariant, and Seiberg-Witten theory, J. Geom. Phys. 59 (2009), no. 2, 246-255. https://doi.org/10.1016/j.geomphys.2008.11.005