DOI QR코드

DOI QR Code

Fringe Analysis around an Inclined Crack Tip of Finite-Width Plate under Tensile Load by Photoelastic Phase-Shifting Method

광탄성 위상이동법을 이용한 인장판 경사균열 선단주위의 프린지 해석

  • 리웨이정 (군산대학교 대학원 기계공학과) ;
  • 백태현 (군산대학교 기계자동차공학부) ;
  • 홍동표 (전북대학교 기계시스템공학부) ;
  • 이병희 (군산대학교 대학원 기계공학과) ;
  • 서진 (군산대학교 대학원 기계공학과)
  • Received : 2012.01.02
  • Accepted : 2012.02.10
  • Published : 2012.02.28

Abstract

Photoelasticity is a technique of experimental methods and has been widely used in various domains of engineering to determine the stress distribution of structures. Without complicated mathematical formulation, this technique can conveniently provide a fairly accurate whole-field stress analysis for a mechanical structure. Here, stress distribution around an inclined crack tip of finite-width plate is studied by 8-step phase-shifting method. This method is a kind of photoelastic phase-shifting techniques and can be used for the determination of the phase values of isochromatics and isoclinics. According to stress-optic law, the stress distribution could be obtained from fringe patterns. The results obtained by polariscope arrangement combined with 8-step method and ABAQUS FEM simulations are compared with each other. Good agreement between them shows that 8-step phase-shifting method is reliable and can be used for determination of stress by experiment.

광탄성법은 실험역학에서 응력 또는 변형률을 해석하기 위한 여러 실험방법 중의 하나이며, 다양한 종류의 구조물의 응력 분포를 실험적으로 결정하는 기법이다. 광탄성법은 광탄성 영상의 등색 프린지와 등경 프린지로부터 광탄성 시편에 나타나는 전체의 응력장 분포를 정밀하게 측정할 수 있다. 본 논문에서는 여러 가지 광탄성 기법중 8단계 위상이동법(8-step phase-shifting method)에 관한 이론을 살펴보고, 경사균열이 있는 평판 시편에 인장을 가하여 나타난 광탄성 프린지로부터 경사균열 선단주위의 응력분포를 8단계 위상이동법으로 결정한 후, 이들 결과를 유한요소법(FEM)에 의한 결과와 비교하였다. 8단계 위상이동법을 이용한 실험에 의해 측정된 프린지 차수는 유한요소법에 의한 계산된 프린지 차수값에 근접하였다.

Keywords

References

  1. M. M. Frocht, "Photoelasticity," John Wiley and Sons, Vol. 1 and 2 (1967)
  2. J. W. Dally and R. F. Wiley, "Experimental Stress Anlaysis," 3rd Edition, McGraw-Hill, Inc. (1991)
  3. C. P. Burger, "Photoelasticity in Handbook on Experimental Mechanics," 2nd Ed., Chapter 5, Edited by A. S. Kobayashi, Society for Experimental Mechanics, Inc., Bethel, Connecticut, pp. 165-266 (1993)
  4. T. H. Baek, "Digital image processing technique for photoelastic isochromatic fringe sharpening," Journal of the Korean Precision Engineering, Vol. 10, No. 3, pp. 220-230 (1993)
  5. T. H. Baek and J. C. Lee, "Development of image processing technique for photoelastic fringe analysis," Trans. of KSME, Vol. 18, No. 10, pp. 2577-2584 (1994)
  6. T. H. Baek, M. S. Kim, Y. Morimoto and M. Fujigaki, "Separation of isochromatics and isoclinics from photoelastic fringes in a circular disk by phase measuring technique," KSME International Journal, Vol. 16, No. 2, pp. 1207-1213 (2002)
  7. Y. Morimoto, R. Matsui, T. H. Baek and M. S. Kim, "Automated analysis of isochromatics and isoclinics using phase-shifting method," Journal of the Japan Society for Experimental Mechanics(JSEM), Vol. 1, No. 1, pp. 29-33 (2001)
  8. T. H. Baek, "Measurement of stress distribution around a circular hole in a plate under bending moment using phase-shifting method with reflective polariscope arrangement," Journal of Solid Mechanics and Material Engineering, Vol. 2, No. 4, pp. 549-556 (2008) https://doi.org/10.1299/jmmp.2.549
  9. Photoelastic Division, Measurement Group, Inc., Raleigh, NC 27611, USA.
  10. ABAQUS Inc., "ABAQUS Analysis User's Manual," ABAQUS Inc. (2003)
  11. T. H. Baek, "Analysis of stress distribution around a central crack tip in a tensile plate using phase-shifting photoelasticity and a power series stress function," Journal of the Korean Society for Nondestructive Testing, Vol. 29, No. 1, pp. 1-9 (2009)
  12. T. H. Baek, L. Chen and D. P. Hong, "Hybrid determination of mixed-mode stress intensity factors on discontinuous finite-width plate by finite element and photoelasticity," Journal of Mechanical Science and Technology(JMST), Vol. 25, No. 10, pp. 2535-2543 (2011) https://doi.org/10.1007/s12206-011-0740-1