DOI QR코드

DOI QR Code

Molecular characterization and immunohistochemical localization of a mitogen-activated protein kinase, Accp38b, from Apis cerana cerana

  • Zhang, Liang (College of Life Sciences, Shandong Agricultural University) ;
  • Meng, Fei (College of Life Sciences, Shandong Agricultural University) ;
  • Li, Yuzhen (College of Life Sciences, Shandong Agricultural University) ;
  • Kang, Mingjiang (College of Animal Science and Technology, Shandong Agricultural University) ;
  • Guo, Xingqi (College of Life Sciences, Shandong Agricultural University) ;
  • Xu, Baohua (College of Animal Science and Technology, Shandong Agricultural University)
  • Received : 2011.11.28
  • Accepted : 2012.01.27
  • Published : 2012.05.31

Abstract

The p38 mitogen-activated protein kinase (MAPK) is involved in various processes, including stress responses, development, and differentiation. However, little information on p38 MAPK in insects is available. In this study, a p38 MAPK gene, $Accp38b$, was isolated from $Apis$ $cerana$ $cerana$ and characterized. The quantitative real-time PCR (Q-PCR) analysis revealed that $Accp38b$ was induced by multiple stressors. Notably, the expression of $Accp38b$ was relatively higher in the pupae phase than in other developmental phases. During the pupae phase, Accp38b expression was higher in the thorax than in the head and abdomen and higher in the fat body than in the muscle and midgut. Immunohistochemisty showed significant positive staining of Accp38b in sections from the brain, eyes, fat body, and midgut of $A.$ $cerana$ $cerana$. These results suggest that Accp38b may play a crucial role in stress responses and have multiple aspects function during development.

Keywords

References

  1. Davis, M. M., Primrose, D. A. and Hodgetts, R. B. (2008) A member of the p38 mitogen-activated protein kinase family is responsible for transcriptional induction of Dopa decarboxylase in the epidermis of Drosophila melanogaster during the innate immune response. Mol. Cell. Biol. 28, 4883-4895. https://doi.org/10.1128/MCB.02074-07
  2. Park, J. S., Kim, Y. S. and Yoo, M. A. (2009) The role of p38b MAPK in age-related modulation of intestinal stem cell proliferation and differentiation in Drosophila . Aging (Albany NY) 1, 637-651.
  3. Raman, M., Chen, W. and Cobb, M. H. (2007) Differential regulation and properties of MAPKs. Oncogene 26, 3100-3112. https://doi.org/10.1038/sj.onc.1210392
  4. Ono, K. and Han, J. (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12, 1-13. https://doi.org/10.1016/S0898-6568(99)00071-6
  5. Han, J., Lee, J. D., Bibbs, L. and Ulevitch, R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808-811. https://doi.org/10.1126/science.7914033
  6. Zarubin, T. and Han, J. (2005) Activation and signaling of the p38 MAP kinase pathway. Cell. Res. 15, 11-18. https://doi.org/10.1038/sj.cr.7290257
  7. An, H., Lu, X., Liu, D. and Yarbrough, W. G. (2011) LZAP inhibits p38 MAPK (p38) phosphorylation and activity by facilitating p38 association with the wild-type p53 induced phosphatase 1 (WIP1). PLoS One 6, e16427. https://doi.org/10.1371/journal.pone.0016427
  8. Gong, X., Ming, X., Deng, P. and Jiang, Y. (2010) Mechanisms regulating the nuclear translocation of p38 MAP kinase. J. Cell. Biochem. 110, 1420-1429. https://doi.org/10.1002/jcb.22675
  9. Roux, P. P. and Blenis, J. (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320-344. https://doi.org/10.1128/MMBR.68.2.320-344.2004
  10. Chen, J., Xie, C., Tian, L., Hong, L., Wu, X. and Han, J. (2010) Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi. Proc. Natl. Acad. Sci. U.S.A. 107, 20774-20779. https://doi.org/10.1073/pnas.1009223107
  11. Craig, C. R., Fink, J. L., Yagi, Y., Ip, Y. T. and Cagan, R. L. (2004) A Drosophila p38 orthologue is required for environmental stress responses. EMBO Rep. 5, 1058-1063. https://doi.org/10.1038/sj.embor.7400282
  12. Adachi-Yamada, T., Nakamura, M., Irie, K., Tomoyasu, Y., Sano, Y., Mori, E., Goto, S., Ueno, N., Nishida, Y. and Matsumoto, K. (1999) p38 mitogen-activated protein kinase can be involved in transforming growth factor beta superfamily signal transduction in Drosophila wing morphogenesis. Mol. Cell. Biol. 19, 2322-2329. https://doi.org/10.1128/MCB.19.3.2322
  13. Park, J. S., Kim, Y. S., Kim, J. G., Lee, S. H., Park, S. Y., Yamaguchi, M. and Yoo, M. A. (2010) Regulation of the Drosophila p38b gene by transcription factor DREF in the adult midgut. Biochim. Biophys. Acta. 1799, 510-519. https://doi.org/10.1016/j.bbagrm.2010.03.001
  14. Ishida, M., Mitsui, T., Yamakawa, K., Sugiyama, N., Takahashi, W., Shimura, H., Endo, T., Kobayashi, T. and Arita, J. (2007) Involvement of cAMP response element-binding protein in the regulation of cell proliferation and the prolactin promoter of lactotrophs in primary culture. Am. J. Physiol. Endocrinol. Metab. 293, E1529-1537. https://doi.org/10.1152/ajpendo.00028.2007
  15. Carlezon, W. A., Jr., Duman, R. S. and Nestler, E. J. (2005) The many faces of CREB. Trends. Neurosci. 28, 436-445. https://doi.org/10.1016/j.tins.2005.06.005
  16. Han, Z. S., Enslen, H., Hu, X., Meng, X., Wu, I. H., Barrett, T., Davis, R. J. and Ip, Y. T. (1998) A conserved p38 mitogen- activated protein kinase pathway regulates Drosophila immunity gene expression. Mol. Cell. Biol. 18, 3527-3539. https://doi.org/10.1128/MCB.18.6.3527
  17. Han, S. J., Choi, K. Y., Brey, P. T. and Lee, W. J. (1998) Molecular cloning and characterization of a Drosophila p38 mitogen-activated protein kinase. J. Biol. Chem. 273, 369-374. https://doi.org/10.1074/jbc.273.1.369
  18. Cancino-Rodezno, A., Alexander, C., Villasenor, R., Pacheco, S., Porta, H., Pauchet, Y., Soberon, M., Gill, S. S. and Bravo, A. (2010) The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect. Biochem. Mol. Biol. 40, 58-63. https://doi.org/10.1016/j.ibmb.2009.12.010
  19. Okamura, T., Shimizu, H., Nagao, T., Ueda, R. and Ishii, S. (2007) ATF-2 regulates fat metabolism in Drosophila. Mol. Biol. Cell 18, 1519-1529. https://doi.org/10.1091/mbc.E06-10-0909
  20. Borders, A. S., de Almeida, L., Van Eldik, L. J. and Watterson, D. M. (2008) The $p38\alpha$ mitogen-activated protein kinase as a central nervous system drug discovery target. BMC Neurosci. 9(Suppl 2), S12. https://doi.org/10.1186/1471-2202-9-S2-S12
  21. Takeda, K. and Ichijo, H. (2002) Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells 7, 1099-1111. https://doi.org/10.1046/j.1365-2443.2002.00591.x
  22. Oliveira, C. S., Rigon, A. P., Leal, R. B. and Rossi, F. M. (2008) The activation of ERK1/2 and p38 mitogen-activated protein kinases is dynamically regulated in the developing rat visual system. Int. J. Dev. Neurosci. 26, 355-362. https://doi.org/10.1016/j.ijdevneu.2007.12.007
  23. Matsukage, A., Hirose, F., Yoo, M. A. and Yamaguchi, M. (2008) The DRE/DREF transcriptional regulatory system: a master key for cell proliferation. Biochim. Biophys. Acta. 1779, 81-89. https://doi.org/10.1016/j.bbagrm.2007.11.011
  24. Park, S. Y., Kim, Y. S., Yang, D. J. and Yoo, M. A. (2004) Transcriptional regulation of the Drosophila catalase gene by the DRE/DREF system. Nucleic Acids Res. 32, 1318-1324. https://doi.org/10.1093/nar/gkh302
  25. Meng, F., Kang, M., Liu, L., Luo, L., Xu, B. and Guo, X. (2011) Characterization of the TAK1 gene in Apis cerana cerana (AccTAK1) and its involvement in the regulation of tissue-specific development. BMB Rep. 44, 187-192. https://doi.org/10.5483/BMBRep.2011.44.3.187
  26. Tufail, M., Naeemullah, M., Elmogy, M., Sharma, P. N., Takeda, M. and Nakamura, C. (2010) Molecular cloning, transcriptional regulation, and differential expression profiling of vitellogenin in two wing-morphs of the brown planthopper, Nilaparvata lugens Stal (Hemiptera: Delphacidae). Insect. Mol. Biol. 19, 787-798. https://doi.org/10.1111/j.1365-2583.2010.01035.x

Cited by

  1. A typical RNA-binding protein gene (AccRBM11) in Apis cerana cerana: characterization of AccRBM11 and its possible involvement in development and stress responses vol.21, pp.6, 2016, https://doi.org/10.1007/s12192-016-0725-1
  2. Molecular cloning and characterization ofp38gene in the Chinese Mitten Crab,Eriocheir sinensis vol.47, pp.4, 2016, https://doi.org/10.1111/are.12590