DOI QR코드

DOI QR Code

Physicochemical Characteristics of Steamed Prunus mume Powder Granules in a Fluid-Bed Granulator

유동층조립기를 이용한 금매분말과립의 물리·화학적 특성

  • 신명곤 (우송대학교 식품생물과학과)
  • Received : 2012.02.03
  • Accepted : 2012.03.15
  • Published : 2012.05.31

Abstract

$Prunus$ $mume$ was steamed for easier removal of the pulp. The steamed fruit pulp was vacuum dried and powdered. The steamed $Prunus$ $mume$ powder (SPP) was passed through a 250 ${\mu}m$ sieve, fluidized in a fluid-bed granulator, and then granulated by top-spraying with water (SPPGW) or the extract obtained from steam (SPPGE). Then the physicochemical and sensory properties of SPP, SPPGW, and SPPGE were evaluated. The flowability of powder (angle of repose $^{\circ}$) of SPP, SPPGW and SPPGE was $23.59^{\circ}$, $11.07^{\circ}$, and $13.94^{\circ}$, respectively. The water dispersibility of SPP, SPPGW, and SPPGE was 18.69, 10.04 and 6.00 sec, respectively. Also, the overall acceptance of SPP, SPPGW and SPPGE was 3.00, 3.44 and 6.56, respectively. In conclusion, SPPGE can be used as granular steamed whole fruit pulp with good powder flowability and dispersibility, and therefore consumer acceptance.

매실은 구연산함량을 지표성분으로 하여 건강기능식품으로 인정받아, 재배가 증가됨에 따라 공급과잉에 이르러 다양한 가공품의 개발이 필요하다. 본 실험에서는 매실의 저장성을 높이고, 매실 성분을 그대로 섭취하기 위하여 금매분말과립을 제조하였다. 과육분리를 용이하게 하기 위해 청매를 증숙하여 금매를 제조하고 과육만을 분리하여 건조한 후 유동층조립기를 이용하여 과립을 제조하였다. 과립제조 시 증류수와 매실농축액을 분사하여 제조된 과립 SPPGW와 SPPGE에 대하여 일반성분, 매실제품의 지표성분인 구연산, 물리적 및 관능적 특성의 변화를 분석하였다. 분석결과 SPPGE에서 금매제조 시 추출액에서 유래한 지방과 구연산함량이 높아진 것을 알 수 있었다. 물리적 특성 분석에서는 금매분말을 과립화하였을 때 유동성과 용해성이 증진되어 과립화가 분말의 형태보다 편리한 제품의 형태임을 알 수 있었고, SPPGW가 유동성은 우수하였으나 용해성이 SPPGE보다 떨어지는 현상을 나타냈다. 관능특성분석 결과에서는 SPPGE는 색이 진하고 과립이 반짝거리며, 입안에서 쉽게 부서지는 특성을 나타내었다. 소비자기호도 평가결과에서는 SPPGE가 외관, 조직감 및 전반적인 기호도에서 가장 높은 평가를 받고 있어, 소비자들은 SPPGE를 선호하는 것을 알 수 있었다. 결론적으로 매실을 금매의 형태로 제조하여 분말화한 후 과립화하는 것이 편리성을 증가시켜 주는 것을 알 수 있었고, 과립화 과정 중 분사액은 물로만 분사하는 것보다 매실농축액을 사용하는 것이 용해성이나 기호성을 높이는데 효율적이었다.

Keywords

References

  1. Chung HS, Kim HS, Lee YG, Seong JH. 2010. Effect of freezing pretreatment on juice expression and drying characteristics of Prunus mume fruit. Korean J Food Preserv 17: 507-512.
  2. Paik IL, Chang WR, Kwak YS, Cho SY, Jin HE. 2010. The effect of Prunus mume supplementation on energy substrate levels and fatigue induction factors. J Life Sci 20: 49-54. https://doi.org/10.5352/JLS.2010.20.1.049
  3. Shin SC. 1995. Changes in components of Ume fruit during development and maturation. J Oriental Bot Res 8: 259-264.
  4. Paik IY, Chang WR, Kwak YS, Cho SY, Jin HE. 2010. The effect of Prunus mume supplementation on energy substrate levels and fatigue induction factors. J Life Sci 1: 49-54.
  5. Kim IS, Kwon YJ. 2008. A study on the consumers' use of Prunus mume processed products at Daegu and Gyeongbuk areas in Korea. Korean J Culin Res 14: 79-92.
  6. Beak JJ, Choi JI. 2010. Analysis of consumer behavior toward and preferences for Prunus mume (Maesil), the Chinese plum. Korean J Food Preserv 17: 571-580.
  7. Wikberg M, Alderborn G. 1991. Compression characteristics of granulated material. IV. The effects of granule porosity on the fragmentation propensity and the compatibility of some granulations. Int J Pharm 69: 239-253. https://doi.org/10.1016/0378-5173(91)90366-V
  8. Otsuka T, Iwao Y, Miyagishima A, Itai S. 2011. Application of principal component analysis enables to effectively find important physical variables for optimization of fluid bed granular conditions. Intern J Pharm 409: 81-88. https://doi.org/10.1016/j.ijpharm.2011.02.044
  9. Hamashita T, Nakagawa AT, Wanato S. 2007. Granulation of core particles suitable for film coating by agitation fluidized bed I. Optimum formulation for core particles and development of a novel friability test method. Chem Pharm Bull 55: 1169-1174. https://doi.org/10.1248/cpb.55.1169
  10. Maulny APE, Beckett ST, Mackenzie G. 2005. Physical properties of co-crystalline sugar and honey. J Food Sci 70: E567-E572.
  11. Wright BJ, Zevchak SE, Wright JM, Drake MA. 2009. The impact of agglomeration and storage on flavor and flavor stability of whey protein concentrate 80% and whey protein isolate. J Food Sci 74: S17-S29. https://doi.org/10.1111/j.1750-3841.2008.00975.x
  12. AOAC. 1995. Official methods of analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 910-928.
  13. Stone H, Sidel JL. 1993. Sensory evaluation. 2nd ed. Academic Press, San Diego, CA, USA. p 202-242
  14. Thanh H, Nuyen WS, Hapgood K. 2010. Effect of formulation hydrophobicity on drug distribution in wet granulation. Chem Engin J 164: 330-339. https://doi.org/10.1016/j.cej.2010.05.008
  15. Kokubo H, Nakamura S, Sunada H. 1995. Effect of several cellulosic binders on particle size distribution in fludized bed granulation. Chem Pharm Bull 43: 1402-1406. https://doi.org/10.1248/cpb.43.1402
  16. Pietsch W. 2005. Agglomeration in industry: occurrence and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. p 207-246.
  17. Kang MY, Jeong YH, Eun JB. 1999. Physical and chemical characteristics of flesh and pomace of Japanese apricots (Prunus mume Sieb. et Zucc). Korean J Food Sci Technol 31: 1434-1439.
  18. Hwang JB, Yang MO, Shin HK. 1997. Survey for approximate composition and mineral content of medicinal herbs. Korean J Food Sci Technol 29: 671-679.

Cited by

  1. Quality and Antioxidant Activity of Granules Containing Herbal Medicine Extracts vol.44, pp.9, 2015, https://doi.org/10.3746/jkfn.2015.44.9.1311
  2. 다양한 부형제 첨가에 따른 인삼분말 과립차의 물리적 특성 vol.35, pp.3, 2012, https://doi.org/10.12925/jkocs.2018.35.3.683
  3. Rice granules with improved solubility prepared via fluidised-bed granulation vol.17, pp.2, 2012, https://doi.org/10.1515/ijfe-2019-0287