DOI QR코드

DOI QR Code

Synthesis and Physical Properties of Sm Doped Pb Free 3 Phase-Glasses

Sm 농도에 따른 무연 3상 유리계의 합성과 물리적 성질

  • Park, Jong-Ho (Department of Science Education, Chinju National University of Education)
  • Received : 2012.05.10
  • Accepted : 2012.07.02
  • Published : 2012.07.27

Abstract

Glasses were prepared with compositions of $(13-x)BaO-80B2_O_3-7Li_2O{\cdot}xSm_2O_3$, BBLSx(x=0.5, 0.4, 0.3) by melting the starting materials of boron oxide(99.9%), lithium oxide(99.9%), barium carbon oxide(99.9%), and samarium oxide(99.9%) and then quenching the melt at $1350^{\circ}C$. This led to good-quality BBLSx(x=0.4, 0.3) and poor-quality BBLSx(x=0.5) glasses. The physical and structural properties of the BBLSx glasses were studied by means x-ray diffraction, scanning electron microscopy(SEM), differential scanning calorimetry(DSC), and dielectric spectroscopy. From the x-ray diffraction and SEM results, the quality of the BBLSx glasses significantly depends on the $Sm_2O_3$ concentration. The x-ray diffraction pattern showed that the crystallites in the BBLSx glasses after heat treatment at $700^{\circ}C$ may be $LiBaB_9O_{15}$. From the DSC results, the glass transition temperatures($T_g$), crystallization temperatures($T_c$), and the maximum temperatures of the crystallized($T_p$) BBLSx glasses all changed with the $Sm_2O_3$ concentration. According to the dielectric spectroscopy results, the values of the real dielectric constant and Tan ${\delta}$ of the BBLSx glasses depended on the $Sm_2O_3$ concentration. The values of the real dielectric constant and Tan ${\delta}$ were also shown to depend on the measuring temperature, possibly due to the ion migration in the bulk of the BBLSx glasses.

Keywords

References

  1. B. V. R. Chowdari, K. L. Tan and W. T. Chia, Mater. Res. Soc. Symp. Proc., 293, 325 (1992). https://doi.org/10.1557/PROC-293-325
  2. G. X. Wang, D. H. Bradhurst, S. X. Dou and H. K. Liu, J. Power Sourc., 124, 231 (2003). https://doi.org/10.1016/S0378-7753(03)00609-8
  3. D. Ravaine, J. Non-Cryst. Solids, 38-39, 353 (1980). https://doi.org/10.1016/0022-3093(80)90444-5
  4. S. W. Martin, J. Schrooten and B. Meyer J. Non-Cryst. Solids, 307-310, 981 (2002). https://doi.org/10.1016/S0022-3093(02)01563-6
  5. E. Mansour, Phys. B Condens. Matter,362, 88 (2005). https://doi.org/10.1016/j.physb.2005.01.479
  6. M. M. El-Desoky, Phys. Status Solidi, 195, 422 (2003). https://doi.org/10.1002/pssa.200305944
  7. H. S. Kim and B. H. Jung, in Proceedings of the 3rd International Meeting on Information Display, (Daegu, Korea, July 2003). ed. Y. B. Kim (Korea Information Display Society, Seoul, Korea, 2003) p.3391.
  8. J. Y. Song, T. -J. Park and S. -Y. Choi, J. Non-Cryst. Solids, 352, 5403 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.05.041
  9. H. Y. Koo, S. K. Hong, S. H. Ju, I. S. Seo and Y. C. Kang, J. Non-Cryst. Solids, 352, 3270 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.05.014
  10. R. Morena, J. Non-Cryst. Solids, 263-264, 382 (2000). https://doi.org/10.1016/S0022-3093(99)00678-X
  11. L. Koudelka and P. Mosner, Mater. Lett., 42, 194 (2000). https://doi.org/10.1016/S0167-577X(99)00183-4
  12. B. Di Bartolo and G. Armagan, Spectroscopy of Solid State Laser-Type Materials, p. 145, Plenum Press, New York, USA (1987).
  13. S. N. Bodrag, E. G. Valyashko and V. A. Smirnov, Optic. Spectros., 34, 176 (1973).
  14. S. Kubota, S. Sakuragi, S. Hashimoto and J. -Z. Ruan, Nucl. Instrum. Meth. Phys. Res. A, 268, 275 (1988). https://doi.org/10.1016/0168-9002(88)90619-5
  15. B. C. Sales, L. A. Boatner, Science, 226, 45 (1984). https://doi.org/10.1126/science.226.4670.45
  16. A. Hunt, J. Phys. Condense Matter, 2, 9055 (1990). https://doi.org/10.1088/0953-8984/2/46/006