DOI QR코드

DOI QR Code

Fabrication of a Superhydrophobic Surface with Adjustable Hydrophobicity and Adhesivity Based on a Silica Nanotube Array

  • Received : 2012.07.24
  • Accepted : 2012.07.25
  • Published : 2012.10.20

Abstract

A superhydrophobic surface with a water contact angle > $150^{\circ}$ has attracted great interest from both fundamental and practical aspects. In this study, we demonstrated that hydrophobicity of a silica nanotube (SNT) array can be easily controlled by the SNT aspect ratio. In addition, the adhesive and anti-adhesive properties were controlled without modifying the hydrophobic surface. Various silica structures on a polydimethylsiloxane substrate were prepared using the desired alumina template. Bundle-arrayed and bowl-arrayed silica surfaces exhibited extraordinary superhydrophobicity due to the large frontal surface area and hierarchical micro/nanostructure. As the strategy used in this study is biocompatible and a wide range of hydrophobicities are capable of being controlled by the SNT aspect ratio, a hydrophobic surface composed of an SNT array could be an attractive candidate for bioapplications, such as cell and protein chips.

Keywords

References

  1. Wang, S.; Jiang, L. Adv. Mater. 2007, 19, 3423. https://doi.org/10.1002/adma.200700934
  2. Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L. Adv. Mater. 2005, 17, 1977. https://doi.org/10.1002/adma.200401726
  3. Song, X.; Zhai, J.; Wang, Y.; Jiang, L. J. Phys. Chem. B 2005, 109, 4048. https://doi.org/10.1021/jp045152l
  4. Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Adv. Mater. 2002, 14, 1857. https://doi.org/10.1002/adma.200290020
  5. Sun, T. L.; Feng, L.; Gao, X. F.; Jiang, L. Acc. Chem. Res. 2005, 38, 644. https://doi.org/10.1021/ar040224c
  6. Feng, L.; Li, S.; Li, H.; Zhai, J.; Song, Y.; Jiang, L.; Zhu, D. Angew. Chem. Int. Ed. 2002, 41, 1221. https://doi.org/10.1002/1521-3773(20020402)41:7<1221::AID-ANIE1221>3.0.CO;2-G
  7. Zhang, X.; Shi, F.; Yu, X.; Liu, H.; Fu, Y.; Wang, Z.; Jiang, L.; Li, X. J. Am. Chem. Soc. 2004, 126, 3064. https://doi.org/10.1021/ja0398722
  8. Oner, D.; McCarthy, T. J. Langmuir 2000, 16, 7777. https://doi.org/10.1021/la000598o
  9. Hong, X.; Gao, X.; Jiang, L. J. Am. Chem. Soc. 2007, 129, 1478. https://doi.org/10.1021/ja065537c
  10. Yim, E. K.; Reano, R. M.; Pang, S. W.; Yee, A. F.; Chen, C. S.; Leong, K. W. Biomaterials 2005, 26, 5405. https://doi.org/10.1016/j.biomaterials.2005.01.058
  11. Fuard, D.; Tzvetkova-Chevolleau, T.; Decossas, S.; Traqui, P.; Schiavone, P. Microelec. Eng. 2008, 129, 1289.
  12. Feng, X.; Feng, L.; Jin, M.; Zhai, J.; Jiang, L.; Zhu, D. J. Am. Chem. Soc. 2004, 126, 62. https://doi.org/10.1021/ja038636o
  13. Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H. J. Am. Chem. Soc. 2005, 127, 13458. https://doi.org/10.1021/ja053745j
  14. Zhang, L.; Wu, J.; Wang, Y.; Long, Y.; Zhao, N.; Xu, J. J. Am. Chem. Soc. 2012, 134, 9879. https://doi.org/10.1021/ja303037j
  15. Yang, S.; Chen, S.; Tian, Y.; Feng, C.; Chen, L. Chem. Mater. 2008, 20, 1233. https://doi.org/10.1021/cm703220r
  16. Zha, L.; Cebeci, F. C.; Cohen, R. E.; Rubner, M. F. Nano Lett. 2004, 4, 1349. https://doi.org/10.1021/nl049463j
  17. Hikita, M.; Tanaka, K.; Nakamura, T.; Kajiyama, T.; Takahara, A. Langmuir 2005, 21, 7299. https://doi.org/10.1021/la050901r
  18. Coffinier, Y.; Janel, S.; Addad, A.; Blossey, R.; Gengembre, L.; Payen, E.; Boukherroub, R. Langmuir 2007, 23, 1608. https://doi.org/10.1021/la063345p
  19. Niu, J. J.; Wang, J. N. Cryst. Growth Des. 2008, 8, 2793. https://doi.org/10.1021/cg701040g
  20. Masuda, H.; Fukuda, K. Science 1995, 268, 1466. https://doi.org/10.1126/science.268.5216.1466
  21. Li, A. P.; Muller, F.; Birner, A.; Nielsch, K.; Gosele, U. J. Appl. Phys. 1998, 84, 6023. https://doi.org/10.1063/1.368911
  22. Kovtyukhova, N. I.; Mallouk, T. E.; Mayer, T. S. Adv. Mater. 2003, 15, 780. https://doi.org/10.1002/adma.200304701
  23. Son, S. J.; Lee, S. B. J. Am. Chem. Soc. 2006, 128, 15974. https://doi.org/10.1021/ja0663632
  24. Liddle, J. A.; Cui, Y.; Alivisatos, P. J. Vac. Sci. Technol. B 2004, 22, 3409. https://doi.org/10.1116/1.1821572
  25. Krachevsky, P. A.; Nagayama, K. Adv. Colloid Interface Sci. 2000, 85, 145.
  26. Shchukarev, A.; Rosenqvist, J.; Sjoberg, S. J. Elec. Spec. Related Phenomena 2004, 137-140, 171.
  27. Huang, X. J.; Kim, D. H.; Im, M.; Lee, J. H.; Yoon, J. B.; Choi, Y. K. Small 2009, 5, 90. https://doi.org/10.1002/smll.200800649
  28. Li, Y.; Li, C.; Cho, S. O.; Duan, G.; Cai, W. Langmuir 2007, 23, 9802. https://doi.org/10.1021/la700847c
  29. Kim, S. Y.; Yu, J.; Son, S. J.; Min, J. Ultramicroscopy 2010, 110, 659.