DOI QR코드

DOI QR Code

Effect of B2O3 Additives on GaN Powder Synthesis from GaOOH

GaOOH로부터 GaN 분말의 합성에 미치는 B2O3의 첨가효과

  • Song, Changho (Midas System Ltd. Co.) ;
  • Shin, Dongwhee (Department of Materials Engineering, Research center for Infotronic Materials and Devices Hanbat National University) ;
  • Byun, Changsob (Department of Materials Engineering, Research center for Infotronic Materials and Devices Hanbat National University) ;
  • Kim, Seontai (Department of Materials Engineering, Research center for Infotronic Materials and Devices Hanbat National University)
  • 송창호 ((주)마이다스시스템) ;
  • 신동휘 (한밭대학교 신소재공학과 및 정보전자부품소재연구소) ;
  • 변창섭 (한밭대학교 신소재공학과 및 정보전자부품소재연구소) ;
  • 김선태 (한밭대학교 신소재공학과 및 정보전자부품소재연구소)
  • Received : 2012.10.25
  • Accepted : 2012.12.21
  • Published : 2013.02.27

Abstract

In this study, GaN powders were synthesized from gallium oxide-hydroxide (GaOOH) through an ammonification process in an $NH_3$ flow with the variation of $B_2O_3$ additives within a temperature range of $300-1050^{\circ}C$. The additive effect of $B_2O_3$ on the hexagonal phase GaN powder synthesis route was examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transformation infrared transmission (FTIR) spectroscopy. With increasing the mol% of $B_2O_3$ additive in the GaOOH precursor powder, the transition temperature and the activation energy for GaN powder formation increased while the GaN synthesis limit-time ($t_c$) shortened. The XPS results showed that Boron compounds of $B_2O_3$ and BN coexisted in the synthesized GaN powders. From the FTIR spectra, we were able to confirm that the GaN powder consisted of an amorphous or cubic phase $B_2O_3$ due to bond formation between B and O and the amorphous phase BN due to B-N bonds. The GaN powder synthesized from GaOOH and $B_2O_3$ mixed powder by an ammonification route through ${\beta}-Ga_2O_3$ intermediate state. During the ammonification process, boron compounds of $B_2O_3$ and BN coated ${\beta}-Ga_2O_3$ and GaN particles limited further nitridation processes.

Keywords

References

  1. T. Mukai, M. Yamada and S. Nakamura, Jpn. J. Appl. Phys., 38, 3976 (1999). https://doi.org/10.1143/JJAP.38.3976
  2. E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki and N. Ichinose, J. Cryst. Growth, 270, 420 (2004). https://doi.org/10.1016/j.jcrysgro.2004.06.027
  3. S. Cho, J. Lee, I. Park and S. Kim, Kor. J. Mater. Res., 12, 476 (2002) (in Korean). https://doi.org/10.3740/MRSK.2002.12.6.476
  4. M. Nyk, R. Kudrawiec, J. Miseiwicz, R. Paszkiewicz, R. Korbutowicz, J. Kozlowski, J. Serafinczuk and W. Strek, J. Cryst. Growth, 277, 149 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.096
  5. K. Kim, Y. M. Moon, S. Choi, H. K. Jung and S. Nahm, Mater. Lett., 62, 3925 (2008). https://doi.org/10.1016/j.matlet.2008.04.085
  6. B. -H. Choi, M. -J. Ji, Y. -T. An, Y. -S. Ko and Y. -H. Lee, Kor. J. Ceram. Soc., 45, 459 (2008). https://doi.org/10.4191/KCERS.2008.45.8.459
  7. T. S. Moss, Handbook of Semiconductors, Vol. 3, p.262, North-Holland, New York, USA (1980).
  8. J. Lee and S. Kim, Kor. J. Mater. Res., 15, 348 (2005) (in Korean). https://doi.org/10.3740/MRSK.2005.15.5.348
  9. D. Sajuti, M. Yano, T. Narushima and Y. Iguchi, Mater. Trans. JIM, 34, 1195 (1993). https://doi.org/10.2320/matertrans1989.34.1195
  10. M. Hoch, J. Alloys Compd., 320, 267 (2001). https://doi.org/10.1016/S0925-8388(00)01476-6
  11. S. Y. Bae, H. W. Seo, J. Park and H. Yang, Chem. Phys. Lett., 373, 620 (2003). https://doi.org/10.1016/S0009-2614(03)00671-7
  12. W. S. Jung and B. K Min, Mater. Lett., 58, 3058 (2004). https://doi.org/10.1016/j.matlet.2004.05.042
  13. J. K. Jian, X. L. Chen, M. He, W. J. Wang, X. N. Zhang and F. Shen, Chem. Phys. Lett., 368, 416 (2003). https://doi.org/10.1016/S0009-2614(02)01909-7
  14. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., p.407, Addison-Wesley, London, UK (1978).
  15. N. T. Gurin, K. V. Paksyutov, M. A. Terentev and A. V. Shirokov, Tech. Phys. Lett., 34, 905 (2008). https://doi.org/10.1134/S1063785008110011
  16. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, p.5, 8, 31, 40, 42, ULVAC-PHY Inc., Chigasaki, Japan (1995).
  17. H. D. Xiao, H. L. Ma, C. S. Xue, H. Z. Zhuang, J. Ma, F. J. Zong and W. R. Hu, Mater. Lett., 59, 4041 (2005). https://doi.org/10.1016/j.matlet.2005.07.061
  18. G. E. Walrafen, S. R. Samanta and P. N. Krishnan, J. Chem. Phys., 72, 113 (1980). https://doi.org/10.1063/1.438894
  19. J. H. Boo, C. Rohr and W. Ho, J. Cryst. Growth, 189-190, 439 (1998). https://doi.org/10.1016/S0022-0248(98)00323-6
  20. M. Engler, C. Lesniak, R. Damasch, B. Rulsinger and J. Eichler, Process Eng., 84(12), E49 (2007).
  21. J. Zhang, L. Zhang, F. Jiang and Z. Dai, Chem. Phys. Lett., 383, 423 (2004). https://doi.org/10.1016/j.cplett.2003.11.057