DOI QR코드

DOI QR Code

Extrusion of Pellet-type Adsorbents Employed with Alum Sludge and H2S Removal Performance

알럼 슬러지를 이용한 입상흡착제 압출 및 황화수소 제거 성능

  • Park, Nayoung (Department of Chemical Engineering, Kongju National University) ;
  • Bae, Junghyun (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Choul Ho (Department of Chemical Engineering, Kongju National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • Received : 2013.05.10
  • Accepted : 2013.05.26
  • Published : 2013.06.28

Abstract

The objective of this study is optimization of extrusion process for preparation of pellet-type adsorbents employed with alum sludge. Effects of water content and methyl cellulose as a binder on the possibility of extrusion and physical properties of pellet-type adsorbents were investigated. The physical characteristics of the pellet-type adsorbents were studied using nitrogen adsorption and compression strength. With a ratio of water to sludge, 63/100, the adsorbent was well extruded with a cylindrical form and the compressive strength was the highest. With increasing methyl cellulose content, the compressive strength of pellet-type adsorbent could be improved, but the specific surface area decreased. The breakthrough time of the hydrogen sulfide could be increased significantly through calcination and the breakthrough capacity reached to 1,700 mg/g, which seems to be due to increase of surface area during calcination.

본 연구의 목적은 알럼 슬러지를 사용하여 입상흡착제를 제조하기 위한 압출 공정을 최적화하는 것이다. 함수율과 바인더인 메틸 셀룰로스의 함량이 압출 가능성과 입상흡착제의 물리적 특성에 미치는 영향을 연구하였다. 입상흡착제의 물리적 특성은 질소 흡착실험과 압축 강도 측정을 통해서 분석하였다. 증류수와 알럼 슬러지 가공분말의 비가 63/100인 경우가 입상흡착제의 외형이 원통형으로 잘 성형되었고, 압축강도도 가장 높게 나타났다. 메틸 셀룰로스의 함량을 증가시키면 압축강도가 개선되었으나 비표면적이 감소하였다. 성형된 입상흡착제의 소성과정을 거치면 입상흡착제의 표면적이 크게 증가하여 황화수소의 파과 시간이 획기적으로 증가하였으며, 황화수소 파과 용량은 1,700 mg/g 이상을 얻을 수 있었다.

Keywords

References

  1. Cundy, C. S., and Cox, P. A., "The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time," Chem. Rev., 103, 663-701 (2003). https://doi.org/10.1021/cr020060i
  2. Jeong, J. T., Lee, B. H., and Lee, K. H., "Volume Reduction of Drinking Water Treatment Sludge by Acidic Extraction and Reuse of Recovered Alum," J. Kor. Soc. Civil. Eng., 20, 583-589 (2000).
  3. Kim, J. M., Kim, M. K., Lee, J. M., Lee, C. H., Lee, S. W., Choi, D. J., and La, J. M., "Method of Manufacturing a Building Material Composition Eco-friendly," Korea Patent No. 10-1041094 (2011).
  4. Hwang, H. U., Kim, J. H., and Kim, Y. J., "Recycling of Waterworks Sludge in Red Clay Bricks Manufacturing," J. Kor. Soc. Environ. Eng., 31(3), 217-222 (2009).
  5. Lee, J. K., Beak, S. G., Kim, Z. C., Lee, J. I., Pyo, B. S., Choi, J. G., Kim, P. C., and Park, G. H., "A Study on Producing Inorganic Fertilizer from the Sludge of Water Supply Plant," J. KOWREC, 8(1), 103-108 (2000).
  6. Kang, K. C., Kim, Y. H., Kim, J. M., Lee, C. H., and Rhee, S. W., "Synthesis of $AlPO_4$-type Mesoporous Materials using Alum Sludge," Appl. Chem. Eng., 22(2), 173-177 (2011).
  7. Bae, J., Park, N., Lee, C. H., Park, Y. K., and Jeon, J. K., "Adsorption Performance of Basic Gas over Pellet-type Adsorbents Prepared from Water Treatment Sludge," Korean Chem. Eng. Res., 51(3), 352-357 (2013). https://doi.org/10.9713/kcer.2013.51.3.352
  8. Yuan, W., and Bandosz, T. J., "Removal of Hydrogen Sulfide from Biogas on Sludge-derived Adsorbents," Fuel, 86, 2736-2746 (2007). https://doi.org/10.1016/j.fuel.2007.03.012
  9. Flytzani-Stephanopoulos, M., Sakbodin, M., and Wang, Z., "Regenerative Adsorption and Removal of $H_2S$ from Hot Fuel Gas Streams by Rare Earth Oxides," Science, 312, 1508-1510 (2006). https://doi.org/10.1126/science.1125684
  10. Bandosz, T. J., "On the Adsorption/oxidation of Hydrogen Sulfide on Unmodified Activated Carbon at Temperatures Near Ambient," J. Colloids Interf. Sci., 246(1), 1-20 (2002). https://doi.org/10.1006/jcis.2001.7952
  11. Adib, F., Bagreev, A., and Bandosz, T. J., "Adsorption/oxidation of Hydrogen Sulfide on Nitrogen Modified Activated Carbons," Langmuir, 16, 1980-1986 (2000). https://doi.org/10.1021/la990926o
  12. Bagreev, A., and Bandosz, T. J., "A Role of Sodium Hydroxide in the Process of Hydrogen Sulfide Adsorption/oxidation on Caustic-impregnated Activated Carbons," Ind. Eng. Chem. Res., 41, 672-679 (2002). https://doi.org/10.1021/ie010599r
  13. Le Leuch, L. M., Subrenat, A., and Le Cloirec, P., "Hydrogen Sulfide and Ammonia Removal on Activated Carbon Fiber Cloth-supported Metal Oxides," Environ. Technol., 26(11), 1243-1254 (2005). https://doi.org/10.1080/09593332608618594
  14. Polovina, M., Kaluderovic, B., and Babic, B., "Ammonia Adsorption on Chemically Modified Activated Carbon Cloth," J. Serb. Chem. Soc., 63, 653-659 (1998).
  15. Lee, Y. C., and Jeon, J. K., "A Study on Catalytic Process in Pilot Plant for Abatement of PFC Emission," Clean Tech., 18(2), 216-220 (2012). https://doi.org/10.7464/ksct.2012.18.2.216
  16. Lim, J. W., Choi, Y., Yoon, H. S., Park, Y. K., Yim, J. H., and Jeon, J. K., "Extrusion of Honeycomb Monoliths Employed with Activated Carbon-LDPE Hybrid Materials," J. Ind. Eng. Chem., 16, 51-56 (2010). https://doi.org/10.1016/j.jiec.2010.01.022
  17. Rouquerol, J., Avnir, D., Fairbridge, C. W., Everet, D. H., Haynes, J. H., Pernicone, N., Ramsay, J., Sing, K. S., and Unger, K. K., "Recommendations for the Characterization of Porous Solids," Pure Appl. Chem., 66, 1739-1758 (1994). https://doi.org/10.1351/pac199466081739

Cited by

  1. Adsorption Kinetic Constants for Basic Odorant on Pellet-type Adsorbents Recycled from Water-treatment Sludge vol.25, pp.2, 2014, https://doi.org/10.14478/ace.2014.1002
  2. Development of Adsorbents for Removal of Hydrogen Sulfide and Ammonia Using Carbon Black from Pyrolysis of Waste Tires vol.21, pp.2, 2015, https://doi.org/10.7464/ksct.2015.21.2.108
  3. Comparison of Adsorption Performance of Ammonia and Formaldehyde Gas Using Adsorbents Prepared from Water Treatment Sludge and Impregnated Activated Carbon vol.27, pp.1, 2016, https://doi.org/10.14478/ace.2015.1123
  4. Synthesis of Butenes through Butanol Dehydration over Catalyst Prepared from Water Treatment Sludge vol.53, pp.1, 2015, https://doi.org/10.9713/kcer.2015.53.1.121
  5. 알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구 vol.53, pp.6, 2020, https://doi.org/10.9719/eeg.2020.53.6.667
  6. 정수슬러지를 이용한 제올라이트의 합성 및 특성연구 vol.26, pp.4, 2013, https://doi.org/10.7464/ksct.2020.26.4.263