DOI QR코드

DOI QR Code

Novel Punch-through Diode Triggered SCR for Low Voltage ESD Protection Applications

  • Bouangeune, Daoheung (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Vilathong, Sengchanh (Faculty of Education, National University of Laos) ;
  • Cho, Deok-Ho (R&D Division, Sigetronics, Inc.) ;
  • Shim, Kyu-Hwan (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Leem, See-Jong (Department of Hydrogen Energy, Dongshin University) ;
  • Choi, Chel-Jong (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University)
  • Received : 2014.07.29
  • Accepted : 2014.09.21
  • Published : 2014.12.30

Abstract

This research presented the concept of employing the punch-through diode triggered SCRs (PTTSCR) for low voltage ESD applications such as transient voltage suppression (TVS) devices. In order to demonstrate the better electrical properties, various traditional ESD protection devices, including a silicon controlled rectifier (SCR) and Zener diode, were simulated and analyzed by using the TCAD simulation software. The simulation result demonstrates that the novel PTTSCR device has better performance in responding to ESD properties, including DC dynamic resistance and capacitance, compared to SCR and Zener diode. Furthermore, the proposed PTTSCR device has a low reverse leakage current that is below $10^{-12}$ A, a low capacitance of $0.07fF/mm^2$, and low triggering voltage of 8.5 V at $5.6{\times}10^{-5}$ A. The typical properties couple with the holding voltage of 4.8 V, while the novel PTTSCR device is compatible for protecting the low voltage, high speed ESD protection applications. It proves to be good candidates as ultra-low capacitance TVS devices.

Keywords

References

  1. A. Amerasekera and C. Duvvury, IEEE Trans. Compon. Packag. Manuf. Tech. 18 (1995) 314-320. https://doi.org/10.1109/95.390309
  2. D. Bouangeune, Y. H. Kil, S. S. Choi, D. H. Cho, K. H. Shim and Ch. J. Choi, Materials Transactions. 54 (2013) 2125-2130. https://doi.org/10.2320/matertrans.M2013144
  3. S. S. Choi, D. H. Cho and K. H. Shim, Electron. Mater. Lett. 5 (2009) 59-62. https://doi.org/10.3365/eml.2009.06.059
  4. M. Shur, Introduction to Electronic Device, John Wiley & Sons, Ltd, chapter 4, 226 (1996)
  5. S. W. Song, S. K. Chung, and Y. I. Choi, J. Korean Phys. Soc. 42, S765 (2003).
  6. Y. Ch. King, B. Yu, J. Pohlman, and Ch. Hu, IEEE Trans. Electron Devices. 43, 2037 (1996). https://doi.org/10.1109/16.543049
  7. R. van Dalen, G.E.J. Koops, and O. Pfennigstorf, Journal of Electrostatics. 61, 149 (2004). https://doi.org/10.1016/j.elstat.2004.02.004
  8. M. Kang, K. Wh. Song, B. G. Park, H. Ch. Shin, Microelectronics Journal. 42, 837 (2011). https://doi.org/10.1016/j.mejo.2011.04.009
  9. J. A. Salcedo, J. J. Liou, and J. C. Bernier, ELECTRON DEVICE LETTERS. 25, 658 (2004). https://doi.org/10.1109/LED.2004.834736
  10. H. Xie, H. Feng, R. Zhan, A. Wang, D. Rodriguez, and D. Rice, ELECTRON DEVICE LETTERS. 26, 121 (2005). https://doi.org/10.1109/LED.2004.841860
  11. J. Urresti, S. Hidalgo, D. Flores, J. Roig, I. Cortes, and J. Rebollo, Microelectronics Reliability. 45, 1181(2005) https://doi.org/10.1016/j.microrel.2004.10.023
  12. S. Mahajan, Electron. Mater. Lett. 2, 59 (2006).
  13. E. Romero, Application note: AND8319/D, On Semiconductor, http://onsemi.com. Rev.0 (2008).