DOI QR코드

DOI QR Code

AN UPSTREAM PSEUDOSTRESS-VELOCITY MIXED FORMULATION FOR THE OSEEN EQUATIONS

  • Park, Eun-Jae (Department of Mathematics and Department of Computational Science and Engineering Yonsei University) ;
  • Seo, Boyoon (Department of Mathematics Yonsei University)
  • Received : 2013.03.20
  • Published : 2014.01.31

Abstract

An upstream scheme based on the pseudostress-velocity mixed formulation is studied to solve convection-dominated Oseen equations. Lagrange multipliers are introduced to treat the trace-free constraint and the lowest order Raviart-Thomas finite element space on rectangular mesh is used. Error analysis for several quantities of interest is given. Particularly, first-order convergence in $L^2$ norm for the velocity is proved. Finally, numerical experiments for various cases are presented to show the efficiency of this method.

Keywords

References

  1. C. Bahriawati and C. Carstensen, Three Matlab implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control, Comput. Methods Appl. Math. 5 (2005), no. 4, 333-361.
  2. M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method, SIAM J. Numer. Anal. 43 (2006), no. 6, 2544-2566. https://doi.org/10.1137/050631227
  3. S. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994.
  4. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.
  5. A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 32 (1982), no. 1-3, 199-259. https://doi.org/10.1016/0045-7825(82)90071-8
  6. E. Burman, M. A. Fernandez, and P. Hansbo, Continuous interior penalty finite element method for Oseen's equations, SIAM J. Numer. Anal. 44 (2006), no. 3, 1248-1274. https://doi.org/10.1137/040617686
  7. Z. Cai and G. Starke, First-order system least squares for the stress-displacement formulation: linear elasticity, SIAM J. Numer. Anal. 41 (2003), no. 2, 715-730. https://doi.org/10.1137/S003614290139696X
  8. Z. Cai, C. Tong, P. S. Vassilevski, and C. Wang, Mixed finite element methods for incompressible flow: Stationary Stokes equations, Numer. Methods Partial Differential Equations 26 (2010), no. 4, 957-978.
  9. Z. Cai and Y.Wang, Pseudostress-velocity formulation for incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids 63 (2010), no. 3, 341-356. https://doi.org/10.1002/fld.2077
  10. C. Carstensen, D. Kim, and E.-J. Park, A priori and a posteriori pseudostress-velocity mixed finite element error analysis for the Stokes problem, SIAM J. Numer. Anal. 49 (2011), no. 6, 2501-2523. https://doi.org/10.1137/100816237
  11. S. H. Chou, Mixed upwinding covolume methods on rectangular grids for convection-diffusion problems, SIAM J. Sci. Comput. 21 (1999), no. 1, 145-165. https://doi.org/10.1137/S1064827597321052
  12. C. Dawson, Analysis of an upwind-mixed finite element method for nonlinear contaminant transport equations, SIAM J. Numer. Anal. 35 (1998), no. 5, 1709-1724. https://doi.org/10.1137/S0036142993259421
  13. H. Elman, D. Silvester, and A.Wathen, Finite Elements and Fast Iterative Solvers: With applications in incompressible fluid dynamics, Oxford University Press, New York, 2005.
  14. G. Gatica, A. Marquez, and M. A. Sanchez, Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equations, Comput. Methods Appl. Mech. Engrg. 199 (2010), no. 17-20, 1064-1079. https://doi.org/10.1016/j.cma.2009.11.024
  15. V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York, 1986.
  16. J. Jaffre, Elements finis mixtes et decentrage pour les equations de diffusion-convection, Calcolo 23 (1984), 171-197.
  17. D. Kim and E.-J. Park, A posteriori error estimators for the upstream weighting mixed methods for convection diffusion problems, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 6-8, 806-820. https://doi.org/10.1016/j.cma.2007.09.009
  18. P. Lesaint and P. A. Raviart, On a finite element method for solving the neutron trasport equation, Mathematical Aspect of Finite Elements in Partial Differential Equations, Ed. Carl de Boor, Academic Press, 1974, 89-123.
  19. Z. Li, Convergence analysis of an upwind mixed element method for advection diffusion problems, Appl. Math. Comput. 212 (2009), no. 2, 318-326. https://doi.org/10.1016/j.amc.2009.02.018
  20. F. A. Milner and E.-J. Park, A mixed finite element method for a strongly nonlinear second-order elliptic problem, Math. Comp. 64 (1995), no. 211, 973-988. https://doi.org/10.1090/S0025-5718-1995-1303087-3
  21. S. Norburn and D. Silvester, Stabilised vs. stable mixed methods for incompressible flow, Comput. Methods Appl. Mech. Engrg. 166 (1998), no. 1-2, 131-141. https://doi.org/10.1016/S0045-7825(98)00087-5
  22. E.-J. Park, Mixed finite element methods for nonlinear second order elliptic problems, SIAM J. Numer. Anal. 32 (1995), no. 3, 865-885. https://doi.org/10.1137/0732040
  23. P. A. Raviart and J. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292315. Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977.

Cited by

  1. A mixed virtual element method for the pseudostress–velocity formulation of the Stokes problem vol.37, pp.1, 2017, https://doi.org/10.1093/imanum/drw002