DOI QR코드

DOI QR Code

DEA를 이용한 야구 국가대표단의 타자 선발에 관한 연구

Selecting the Batters of National Baseball Squad using Data Envelopment Analysis

  • Suk, Yeung-Ki (Department of IT Management, Sunmoon University)
  • 투고 : 2013.11.28
  • 심사 : 2014.01.09
  • 발행 : 2014.01.31

초록

본 논문의 주된 관심은 좋은 기록을 보유하고 있는 선수들로 국가대표단을 구성하면 세계대회에서 좋은 성적을 올릴 수 있는가이다. 2010년 광조우 아시안게임에서 우승한 야구 국가대표단 선수들의 경기력을 한국프로야구선수들과 함께 평가해보고, 그 중에서 기량이 뛰어난 선수들로 대표단을 구성하였는지 분석해 보고자 한다. 본 연구를 위해 사용된 DEA모형은 DMU의 재량권이 제한된 BCC 모형(BCC model with non-discretionary)이다. 분석을 위한 투입변수는 타석수와 도루시행횟수이며, 산출변수는 공격공헌도, 도루성공률 및 득점이다. 분석대상이 된 97명의 선수 중에서 22명의 선수가 효율적인 것으로, 75명의 선수가 비효율적인 것으로 측정되었다. 그리고 12명의 대표선수 중에서 8명의 선수가 효율적인 것으로 분류되었다. 이는 2010년 광조우 아시안게임에서의 야구대표팀이 이전 세계대회에서의 경험을 교훈으로 삼아 최강의 전력을 발휘할 수 있는 선수들로 구성되었음을 보여주고 있다.

The purpose of this paper is to identify whether the national baseball squad made up of the best players may get the outstanding results in the international competitions or not. Using Data Envelopment Analysis, the relative efficiency of players in Korean Baseball Organization is estimated as performance measure, and compared with the efficiency scores of national squad members. The paper focuses on the proper choice of DEA model in a baseball setting, thereby selecting the BCC model with non-discretionary variable. Two input variables(plate appearances and stolen bases to enforce) and three output variables(runs, on-base plus slugging and stolen base percentage) are used to evaluate the efficiency of the baseball players. Results showed that 22 players among 97 players were classified as efficient and 8 players among 12 national squad members were as efficient. These findings indicate a potential for DEA to be a major part of the analytical approaches in evaluating the relative efficiency of players.

키워드

참고문헌

  1. Namgil Ha, Understanding the Movement Art and Science, Daehan Media, 2002.
  2. Korean Sports Science Institute, Introduction to Sports Science, Bokyung Publishers, Seoul, 1987.
  3. http://sports.khan.co.kr, 2010. 8. 29.
  4. http://sports.chosun.com, 2010. 8. 29.
  5. L. Koppett, The New Thinking Fan's Guide to Baseball, The Simon & Schuster, Inc., 1991.
  6. C. Kim, "A Study on the Evaluation of Value of Professional Baseball Clubs in Korea", Korean Journal of Sport Management, Vol. 6, No. 1, pp. 15-30, 2001.
  7. T. Kim and H. Cho, "Performance Evaluation and Management of Baseball Players", Korean Journal of Industrial Economics, Vol. 17, No. 6, pp. 2131-2148, December 2004
  8. D. Lee and W. Yang, "Performance Evaluations of Professional Baseball Players using DEA/OERA", IE Interfaces, Vol. 17, No. 4, pp. 440-449, December 2004.
  9. T. R. Anderson and G. P. Sharp, "A New Measure of Baseball Batters using DEA", Annals of Operations Research, Vol. 73, pp. 141-155, 1997. DOI: http://dx.doi.org/10.1023/A:1018921026476
  10. L. H. Howard and J. L. Miller, "Fair Pay for Fair Play: Estimating Pay Equity in Professional Baseball with Data Envelopment Analysis", Academy of Management Journal, Vol. 36, pp. 882-894, 1993. DOI: http://dx.doi.org/10.2307/256763
  11. E. Kim, "The Relationship of Game Performance and Annual Salary for Korean Professional Baseball Pitchers", Journal of Korean Sociology of Sports, Vol. 15, No. 1, pp. 95-104, 2002.
  12. K. Ross, Mathematician at the Ballpark: Odds and Probabilities for Baseball Fans, Pearson Education, Inc., 2005.
  13. Korean Baseball Organization, 2011 Official Yearbook, KBO, 2011.
  14. Z. Hample, Watching Baseball Smarter: A Professional Fan's Guide for Beginners, Semi-experts and Deeply Serious Geeks, Random House, NY, 2007.
  15. A. Charnes, W. W. Cooper, and E. Rhodes, "Measuring the Efficiency of Decision Making Units," European Journal of Operational Research, Vol. 2, 429-444, 1978. DOI: http://dx.doi.org/10.1016/0377-2217(78)90138-8
  16. A. Charnes, W. W. Cooper, Arie Y. Lewin, and Lawrence M. Seiford ed., Data Envelopment Analysis: Theory, Methodology, and Applications, Kluwer Academic Publishers, 1993.
  17. L. M. Seiford, "Data Envelopment Analysis: The Evolution of the State of the Art(1978-1995), The Journal of Productivity Analysis, Vol. 7, pp. 99-137, 1996. DOI: http://dx.doi.org/10.1007/BF00157037
  18. Yeung K. Suk, "Measuring the Impact of Total Quality Management on Efficiency using Data Envelopment Analysis in the Hospital Industry: The Case of the East South Central Region of the United States," Ph. D. Dissertation, The University of Mississippi, 1998.
  19. G. Tavares, A Bibliography of Data Envelopment Analysis(1978-2001), Rutgers Research Report, Rutgers University, NJ, 2002.
  20. Mazur, Mark J., "Evaluating the Relative Efficiency of Baseball Players," in Abraham Charnes, W. W. Cooper, Arie Y. Lewin, and Lawrence M. Seiford ed., Data Envelopment Analysis: Theory, Methodology, and Applications, Kluwer Academic Publishers, 1993.
  21. K. Oh and J. Lee, "A Model Study on Salaries of Korean Pro-Baseball Players using Data Mining", Journal of Korean Sociology of Sport, Vol. 16, No. 2, pp. 295-309, 2003.
  22. M. P. E. Lins, E. G. Gomez, J. C. C. B. Soares de Mello and A. J. R. Soares de Mello, "Olympic Ranking based on a Zero Sum Gains DEA Model", European Journal of Operational Research, Vol. 148, pp. 312-322, 2003. DOI: http://dx.doi.org/10.1016/S0377-2217(02)00687-2
  23. S. Lozano, G. Villa, F. Guerrero, and P. Cortes, "Measuring the Performance of Nations at the Summer Olympics using DEA", Journal of the Operational Research Society, Vol. 53, pp. 501-511, 2002. DOI: http://dx.doi.org/10.1057/palgrave.jors.2601327
  24. D. J. Haas, "Technical Efficiency in the Major League Soccer", Journal of Sports Economics, Vol. 4, pp. 203-215, 2003. DOI: http://dx.doi.org/10.1177/1527002503252144
  25. N. Hirotsu, H. Yoshii, Y. Aoba and M. Yoshimara, "An Evaluation of Characteristics of J-League Players Using Data Envelopment Analysis", Football Science, Vol. 9, pp. 1-13, 2012.
  26. W. W. Cooper, J. L. Ruiz and I. Sirvent, "Selecting non-zero Weights to Evaluate Effectiveness of Basketball Players with DEA", European Journal of Operational Research, Vol. 195, pp. 563-574, 2009. DOI: http://dx.doi.org/10.1016/j.ejor.2008.02.012
  27. K. W. Einolf, "Is Winning Everything: A Data Envelopment Analysis of Major League Baseball and the National Football League", Journal of Sports Economics, Vol. 5, pp. 127-151, 2004. DOI: http://dx.doi.org/10.1177/1527002503254047
  28. E. H. DeOliveira and R. Callum, "Who's the Best? Data Envelopment Analysis and Ranking Players in the National Football League", in S. Butenko, J. Gil-Lafuente and P. M. Pardalos ed., Economisc, Management and Optimization in Sports, pp. 15-30, Berlin, Springer, 2004. DOI: http://dx.doi.org/10.1007/978-3-540-24734-0_2
  29. H. O. Fried, J. Lanbrinos and J. Tyner, "Evaluating the Performance of Professional Golfers on the PGA, LPGA, and SPGA Tours", European Journal of Operational Research, Vol. 154, pp. 548-561, 2004. DOI: http://dx.doi.org/10.1016/S0377-2217(03)00188-7
  30. R. D. Banker and R. C. Morey, "Efficiency analysis for Exogenously Fixed Inputs and Outputs," Operations Research, 32, 4, 513-521, 1986. DOI: http://dx.doi.org/10.1287/opre.34.4.513
  31. R. D. Banker, A. Charnes, W. W. Cooper, J. Swarts and D. A. Thomas, "An Introduction to Data Envelopment Analysis with Some of its Models and their Uses", Research in Governmental and Nonprofit Accounting, Vol. 5, pp. 125-163.