DOI QR코드

DOI QR Code

Design Equation Suggestion through Parametric Study of Laterally Restrained Concrete Decks with Steel Strap

Steel Strap으로 횡보강된 콘크리트 바닥판의 매개변수해석을 통한 설계식 제안

  • 김철환 (포스코건설 기술연구소) ;
  • 이성태 (인하공업전문대학 토목환경과) ;
  • 조병완 (한양대학교 건설환경공학과)
  • Received : 2013.10.17
  • Accepted : 2013.12.09
  • Published : 2014.05.30

Abstract

A deterioration of typical reinforced concrete (RC) bridge deck is due to the use of calcium chloride, cracks and water penetration inside of the deck slab with steel reinforcement. In order to eliminate the defects of RC decks in terms of material, therefore, the steel-strapped deck system is studied and developed by maximizing the arching effect while the girders are restrained using straps in lateral direction to the bridge. This parametric study was performed to analyze the structural characteristics of steel-strapped deck, and to identify the factors of the thickness, span length and lateral restraint stiffness of deck slab considering the concrete non-linearity. Finally, a design equation, which is adequate to South Korea, is suggested.

일반적으로 사용되는 철근콘크리트 교량의 바닥판에는 겨울철 과다한 염화칼슘의 사용과 그로인해 유발되는 성능저하로 인해 균열이 발생하고 수분이 침투하여 바닥판 내부의 철근이 부식됨으로써 균열이 생성 및 진전된다. 이러한 철근콘크리트 바닥판의 단점을 원천적으로 차단하기 위하여 바닥판 내부의 철근을 제거한 후 바닥판 외부에서 Steel strap을 이용하여 거더의 횡방향 거동을 구속시킴으로써 아칭효과를 극대화하고 내하력을 향상시킨 무철근 교량 바닥판이 최근에 개발 및 실용화되고 있다. 본 연구에서는 횡구속된 무철근 바닥판의 영향인자를 파악하기 위하여 콘크리트의 비선형성을 고려하였고 바닥판의 두께, 지간장 및 횡방향 구속강성도 등에 대하여 유한요소법을 이용한 매개변수해석을 수행했다. 또한, 이러한 해석결과를 활용하여 우리나라의 실정에 적합한 설계식을 제안하였다.

Keywords

References

  1. Azad, A. K., Baluch, M. H., Abbasi, M. S., Kaiser, K. (1994), Punching capacity of deck slabs in girder-slab bridges, ACI Structural Journal, 91(6), 656-662.
  2. Canadian Highway Bridge Design Code (CHBDC) (2000), Section 16, Fibre-Reinforced Structures, 688-706.
  3. Fafitis, A., Shah, S. P. (1985), Predictions of ultimate behavior of confined columns subjected to large deformations, ACI Journal, 82(4), 423-433.
  4. Hognestad, E. (1951), A study on combined bending and axial load in reinforced concrete members, Univ. of Illinois Engineering Experiment Station, Univ. of Illinois at Urbana-Champaign, IL, 43-46.
  5. Hordijk, D. A. (1991), Local approach to fatigue of concrete, Thesis of Delft University of Technology, 1-210.
  6. Jo, B. W., Kim C. H. (2012), A Study on Static and Fatigue Behavior of Restrained Concrete Decks without Rebar by Steel Strap, Journal of the Korea Institute for Structural Maintenance and Inspection, 16(5), 137-147 (in Korean). https://doi.org/10.11112/jksmi.2012.16.5.137
  7. Korean Highway Bridge Design Code (2010), Section 2.1, Load, 6-9 (in Korean).
  8. Midas FEA (2007), Advanced Nonlinear and Detail Analysis System, Analysis and Tutorial, MIDAS Information Technology Co., Ltd., 225-268 (in Korean).
  9. Mufti, A. A., Bakht, B., Jaeger, L. G. (1991), Fiber FRC deck slabs with diminished steel reinforcement, IABSE Symposium Proceedings (Leningrad), 388-389.
  10. Mufti, A. A., Jaeger, L. G., Bakht, B., Wegner, L. D. (1993), Experimental investigation of fibre-reinforced concrete deck slabs without internal steel reinforcement, Canadian Journal of Civil Engineering, 20(3), 398-406. https://doi.org/10.1139/l93-055
  11. Newhook, J. P., Mufti, A. A. (1996), A reinforcing steel-free concrete deck slab for the Salmon River Bridge, Concrete International, 18(6), 30-34.