DOI QR코드

DOI QR Code

The GABAB receptor associates with regulators of G-protein signaling 4 protein in the mouse prefrontal cortex and hypothalamus

  • Kim, Gyeongwha (Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Jung, Soonwoong (Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Son, Hyeonwi (Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Kim, Sujeong (Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Choi, Jungil (Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Lee, Dong Hoon (Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Roh, Gu Seob (Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Kang, Sang Soo (Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Cho, Gyeong Jae (Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Choi, Wan Sung (Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Kim, Hyun Joon (Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University)
  • Received : 2013.07.11
  • Accepted : 2013.09.12
  • Published : 2014.06.30

Abstract

Regulators of G-protein signaling (RGS) proteins regulate certain G-protein-coupled receptor (GPCR)-mediated signaling pathways. The GABAB receptor ($GABA_BR$) is a GPCR that plays a role in the stress response. Previous studies indicate that acute immobilization stress (AIS) decreases RGS4 in the prefrontal cortex (PFC) and hypothalamus (HY) and suggest the possibility of a signal complex composed of RGS4 and $GABA_BR$. Therefore, in the present study, we tested whether RGS4 associates with $GABA_BR$ in these brain regions. We found the co-localization of RGS4 and $GABA_BR$ subtypes in the PFC and HY using double immunohistochemistry and confirmed a direct association between $GABA_{B2}R$ and RGS4 proteins using co-immunoprecipitation. Furthermore, we found that AIS decreased the amount of RGS4 bound to $GABA_{B2}R$ and the number of double-positive cells. These results indicate that $GABA_BR$ forms a signal complex with RGS4 and suggests that RGS4 is a regulator of $GABA_BR$.

Keywords

References

  1. De Vries, L., Zheng, B., Fischer, T., Elenko, E. and Farquhar, M. G. (2000) The regulator of G protein signaling family. Annu. Rev. Pharmacol. Toxicol. 40, 235-271. https://doi.org/10.1146/annurev.pharmtox.40.1.235
  2. Dedovic, K., Duchesne, A., Andrews, J., Engert, V. and Pruessner, J. C. (2009) The brain and the stress axis: The neural correlates of cortisol regulation in response to stress. NeuroImage 47, 864-871. https://doi.org/10.1016/j.neuroimage.2009.05.074
  3. Kiss, A. and Aguilera, G. (2000) Role of Alpha-1-Adrenergic Receptors in the Regulation of Corticotropin-Releasing Hormone mRNA in the Paraventricular Nucleus of the Hypothalamus During Stress. Cell Mol. Biol. 20, 683-694.
  4. Kim, G., Lee, Y., Jeong, E. Y., Jung, S., Son, H., Lee, D. H., Roh, G. S., Kang, S. S., Cho, G. J., Choi, W. S. and Kim, H. J. (2010) Acute stress responsive RGS proteins in the mouse brain. Mol. Cells 30, 161-165. https://doi.org/10.1007/s10059-010-0102-3
  5. Gold, S. J., Ni, Y. G., Dohlman, H. G. and Nestler, E. J. (1997) Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J. Neurosci. 17, 8024-8037.
  6. Ni, Y. G., Gold, S. J., Iredale, P. A., Terwilliger, R. Z., Duman, R. S. and Nestler, E. J. (1999) Region-specific regulation of RGS4 (Regulator of G-protein-signaling protein type 4) in brain by stress and glucocorticoids: in vivo and in vitro studies. J. Neurosci. 19, 3674-3680.
  7. Saugstad, J. A., Marino, M. J., Folk, J. A., Hepler, J. R. and Conn, P. J. (1998) RGS4 inhibits signaling by group I metabotropic glutamate receptors. J. Neurosci. 18, 905-913.
  8. Georgoussi, Z., Leontiadis, L., Mazarakou, G., Merkouris, M., Hyde, K. and Hamm, H. (2006) Selective interactions between G protein subunits and RGS4 with the C-terminal domains of the [mu]- and [delta]-opioid receptors regulate opioid receptor signaling. Cellular Signalling 18, 771-782. https://doi.org/10.1016/j.cellsig.2005.07.003
  9. Ding, J., Guzman, J. N., Tkatch, T., Chen, S., Goldberg, J. A., Ebert, P. J., Levitt, P., Wilson, C. J., Hamm, H. E. and Surmeier, D. J. (2006) RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat. Neurosci. 9, 832-842. https://doi.org/10.1038/nn1700
  10. Ghavami, A., Hunt, R. A., Olsen, M. A., Zhang, J., Smith, D. L., Kalgaonkar, S., Rahman, Z. and Young, K. H. (2004) Differential effects of regulator of G protein signaling (RGS) proteins on serotonin 5-HT1A, 5-HT2A, and dopamine D2 receptor-mediated signaling and adenylyl cyclase activity. Cell Signal. 16, 711-721. https://doi.org/10.1016/j.cellsig.2003.11.006
  11. Cavalli, A., Druey, K. M. and Milligan, G. (2000) The regulator of G protein signaling RGS4 selectively enhances alpha 2A-adreoreceptor stimulation of the GTPase activity of Go1alpha and Gi2alpha. J. Biol. Chem. 275, 23693-23699. https://doi.org/10.1074/jbc.M910395199
  12. Herman, J. P., Cullinan, W. E., Morano, M. I., Akil, H. and Watson, S. J. (1995) Contribution of the ventral subiculum to inhibitory regulation of the hypothalamo-pituitary-adrenocortical axis. J. Neuroendocrinol. 7, 475-482. https://doi.org/10.1111/j.1365-2826.1995.tb00784.x
  13. Herman, J. P., Figueiredo, H., Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., Choi, D. C. and Cullinan, W. E. (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front. Neuroendocrinol. 24, 151-180. https://doi.org/10.1016/j.yfrne.2003.07.001
  14. Kovacs, K. J., Miklos, I. H. and Bali, B. (2004) GABAergic mechanisms constraining the activity of the hypothalamo-pituitary-adrenocortical axis. Ann. N. Y. Acad. Sci. 1018, 466-476. https://doi.org/10.1196/annals.1296.057
  15. Calogero, A. E., Gallucci, W. T., Chrousos, G. P. and Gold, P. W. (1988) Interaction between GABAergic neurotransmission and rat hypothalamic corticotropin-releasing hormone secretion in vitro. Brain Res. 463, 28-36. https://doi.org/10.1016/0006-8993(88)90523-9
  16. Terunuma, M., Pangalos, M. N., Moss, S. J. and Thomas, P. B. (2010) Functional Modulation of GABAB Receptors by Protein Kinases and Receptor Trafficking; in: Advances in Pharmacology, pp. 113-122, Academic Press, New York, USA.
  17. Margeta-Mitrovic, M., Jan, Y. N. and Jan, L. Y. (2001) Function of GB1 and GB2 subunits in G protein coupling of GABA(B) receptors. Proc. Natl. Acad. Sci. U. S. A. 98, 14649-14654. https://doi.org/10.1073/pnas.251554498
  18. Song, D. K., Suh, H. W., Huh, S. O., Jung, J. S., Ihn, B. M., Choi, I. G. and Kim, Y. H. (1998) Central GABAA and GABAB receptor modulation of basal and stress-induced plasma interleukin-6 levels in mice. J. Pharmacol. Exp. Ther. 287, 144-149.
  19. Houston, A. J., Wong, J. C. and Ebenezer, I. S. (1997) A study on the involvement of GABAB receptor ligands in stress-induced antinociception in male mice. Methods. Find. Exp. Clin. Pharmacol. 19, 167-171.
  20. Frankowska, M., Filip, M. and Przegalinski, E. (2007) Effects of GABAB receptor ligands in animal tests of depression and anxiety. Pharmacol. Rep. 59, 645-655.
  21. Fowler, C. E., Aryal, P., Suen, K. F. and Slesinger, P. A. (2007) Evidence for association of GABA(B) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J. Physiol. 580, 51-65. https://doi.org/10.1113/jphysiol.2006.123216
  22. Markovic, V. M., Cupic, Z., Vukojevic, V. and Kolar-Anic, L. (2011) Predictive modeling of the hypothalamic-pituitary-adrenal (HPA) axis response to acute and chronic stress. Endocr. J. 58, 889-904. https://doi.org/10.1507/endocrj.EJ11-0037
  23. Schwendt, M. and McGinty, J. F. (2007) Regulator of G-protein signaling 4 interacts with metabotropic glutamate receptor subtype 5 in rat striatum: relevance to amphetamine behavioral sensitization. J. Pharmacol. Exp. Ther. 323, 650-657. https://doi.org/10.1124/jpet.107.128561
  24. Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S. and Cohen, J. D. (1999) Conflict monitoring versus selectionfor-action in anterior cingulate cortex. Nature 402, 179-181. https://doi.org/10.1038/46035
  25. Davidson, R. J., Abercrombie, H., Nitschke, J. B. and Putnam, K. (1999) Regional brain function, emotion and disorders of emotion. Curr. Opin. Neurobiol. 9, 228-234. https://doi.org/10.1016/S0959-4388(99)80032-4
  26. MacDonald, A. W., 3rd, Cohen, J. D., Stenger, V. A. and Carter, C. S. (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835-1838. https://doi.org/10.1126/science.288.5472.1835
  27. McEwen, B. S., Eiland, L., Hunter, R. G. and Miller, M. M. (2011) Stress and anxiety: Structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology 62, 3-12.
  28. Palomero-Gallagher, N., Vogt, B. A., Schleicher, A., Mayberg, H. S. and Zilles, K. (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum. Brain. Mapp. 30, 2336-2355. https://doi.org/10.1002/hbm.20667
  29. Whitnall, M. H. (1993) Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog. Neurobiol. 40, 573-629. https://doi.org/10.1016/0301-0082(93)90035-Q
  30. Marques de Souza, L. and Franci, C. R. (2008) GABAergic mediation of stress-induced secretion of corticosterone and oxytocin, but not prolactin, by the hypothalamic paraventricular nucleus. Life Sci. 83, 686-692. https://doi.org/10.1016/j.lfs.2008.09.007
  31. Tasker, J. G. and Dudek, F. E. (1993) Local inhibitory synaptic inputs to neurones of the paraventricular nucleus in slices of rat hypothalamus. J. Physiol. 469, 179-192. https://doi.org/10.1113/jphysiol.1993.sp019810
  32. Wamsteeker Cusulin, J. I., Fuzesi, T., Inoue, W. and Bains, J. S. (2013) Glucocorticoid feedback uncovers retrograde opioid signaling at hypothalamic synapses. Nat. Neurosci. 16, 596-604. https://doi.org/10.1038/nn.3374
  33. Labouebe, G., Lomazzi, M., Cruz, H. G., Creton, C., Lujan, R., Li, M., Yanagawa, Y., Obata, K., Watanabe, M., Wickman, K., Boyer, S. B., Slesinger, P. A. and Luscher, C. (2007) RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nat. Neurosci. 10, 1559-1568. https://doi.org/10.1038/nn2006
  34. Fajardo-Serrano, A., Wydeven, N., Young, D., Watanabe, M., Shigemoto, R., Martemyanov, K. A., Wickman, K. and Lujan, R. (2013) Association of Rgs7/Gbeta5 complexes with girk channels and GABA receptors in hippocampal CA1 pyramidal neurons. Hippocampus 23, 1231-1245. https://doi.org/10.1002/hipo.22161
  35. Maity, B., Stewart, A., Yang, J., Loo, L., Sheff, D., Shepherd, A. J., Mohapatra, D. P. and Fisher, R. A. (2012) Regulator of G protein signaling 6 (RGS6) protein ensures coordination of motor movement by modulating GABAB receptor signaling. J. Biol. Chem. 287, 4972-4981. https://doi.org/10.1074/jbc.M111.297218
  36. Jung, S., Lee, Y., Kim, G., Son, H., Lee, D. H., Roh, G.S., Kang, S. S., Cho, G. J., Choi, W. S. and Kim, H. J. (2012) Decreased expression of extracellular matrix proteins and trophic factors in the amygdala complex of depressed mice after chronic immobilization stress. BMC Neurosci. 13, 58. https://doi.org/10.1186/1471-2202-13-58
  37. Kim, H. J., Gieske, M. C., Hudgins, S., Kim, B. G., Krust, A., Chambon, P. and Ko, C. (2007) Estrogen receptor alpha-induced cholecystokinin type A receptor expression in the female mouse pituitary. J. Endocrinol. 195, 393-405. https://doi.org/10.1677/JOE-07-0358
  38. Oh, Y. J., Na, J., Jeong, J. H., Park, D. K., Park, K. H., Ko, J. S. and Kim, D. S. (2012) Alterations in hyperpolarization-activated cyclic nucleotidegated cation channel (HCN) expression in the hippocampus following pilocarpine-induced status epilepticus. BMB Rep. 45, 635-640. https://doi.org/10.5483/BMBRep.2012.45.11.091
  39. Huang, Z. M., Wu, J., Jia, Z. C., Tian, Y., Tang, J., Tang, Y., Wang, Y., Wu, Y. Z. and Ni, B. (2012) Identification of interacting proteins of retinoid-related orphan nuclear receptor gamma in HepG2 cells. BMB Rep. 45, 331-336. https://doi.org/10.5483/BMBRep.2012.45.6.249

Cited by

  1. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model vol.64, 2015, https://doi.org/10.1016/j.biomaterials.2015.06.015
  2. Decreased levels of RGS4 in the paraventricular nucleus facilitate GABAergic inhibition during the acute stress response vol.472, pp.1, 2016, https://doi.org/10.1016/j.bbrc.2016.02.108
  3. Embedded Synaptic Feedback in the Neuroendocrine Stress Axis vol.27, pp.6, 2015, https://doi.org/10.1111/jne.12260
  4. Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity vol.89, pp.2, 2016, https://doi.org/10.1124/mol.115.102210
  5. Type 1 diabetes alters astrocytic properties related with neurotransmitter supply, causing abnormal neuronal activities vol.1602, 2015, https://doi.org/10.1016/j.brainres.2014.12.055
  6. Effects of low doses of Tat-PIM2 protein against hippocampal neuronal cell survival vol.358, pp.1-2, 2015, https://doi.org/10.1016/j.jns.2015.08.1549
  7. Current concepts regarding developmental mechanisms in diabetic retinopathy in Taiwan vol.6, pp.2, 2016, https://doi.org/10.7603/s40681-016-0007-3
  8. Anti-Stress and Anti-Depressive Effects of Spinach Extracts on a Chronic Stress-Induced Depression Mouse Model through Lowering Blood Corticosterone and Increasing Brain Glutamate and Glutamine Levels vol.7, pp.11, 2018, https://doi.org/10.3390/jcm7110406
  9. Glutamine-supplement Diet Maintains Growth Performance and Reduces Blood Corticosterone Level in Cage-reared Growing Chicks vol.52, pp.3, 2018, https://doi.org/10.14397/jals.2018.52.3.91