DOI QR코드

DOI QR Code

Molecular Characterization and Toxin Profile of Bacillus cereus Strains Isolated from Ready-to-eat Foods

유통 중인 즉석·편의식품류에서 분리한 Bacillus cereus의 산생 Toxin 및 분자유전학적 특성 조사

  • 김태순 (광주광역시 보건환경연구원) ;
  • 김민지 (광주광역시 보건환경연구원) ;
  • 강유미 (광주광역시 보건환경연구원) ;
  • 오그네 (광주광역시 보건환경연구원) ;
  • 최수연 (광주광역시 보건환경연구원) ;
  • 오무술 (광주광역시 보건환경연구원) ;
  • 양용식 (광주광역시 보건환경연구원) ;
  • 서정미 (광주광역시 보건환경연구원) ;
  • 류미금 (광주광역시 보건환경연구원) ;
  • 김은선 (광주광역시 보건환경연구원) ;
  • 하동룡 (광주광역시 보건환경연구원) ;
  • 조배식 (광주광역시 보건환경연구원)
  • Received : 2014.04.04
  • Accepted : 2014.05.02
  • Published : 2014.06.30

Abstract

Toxin-producing Bacillus cereus is the causative agent of two different types of food poisoning: the emetic and the diarrheal types. This study was conducted to investigate the presence of enterotoxin and emetic toxin genes in 263 B. cereus isolated from 619 different ready-to-eat food items. Hemolytic enterotoxins hblA, hblC, and hblD were detected in 85.6, 41.1, and 76.8%, respectively, of the B. cereus isolates. About 67.0% (175/263) of the isolates presented all of three genes. Non-hemolytic enterotoxins nheA, nheB, and nheC were detected in 100, 97.0, and 68.4% of the isolates, respectively. Approximately 90.0% (236/263) of the isolates presented all of these three non-hemolytic enterotoxin genes. Emetic toxin gene, CER, was detected in 132 of 263 (50.2%) isolates. Computer-assisted cluster analysis of Rep-PCR profiles showed a high genetic diversity among the isolates. All B. cereus isolates from food samples tested in this study carried at least 6 of 10 toxin genes.

즉석섭취 편의식품은 일반적으로 소비자가 별도의 조리과정 없이 직접 신선한 상태로 섭취하기 때문에 병원성 미생물에 오염되어 있을 경우 식중독을 일으킬 수 있다. 특히 B. cereus는 자연계에 널리 분포하여 대부분의 식품에 쉽게 오염되어 식중독을 유발 시킬 수 있는 독소형 식중독균 중의 하나이다. 이에 본 연구는 유통 판매중인 즉석섭취 편의식품류 및 식중독이 발생하여 의뢰된 보존식에서 B. cereus의 분리율 및 독소 종류의 분포형태를 파악하였다. 식품 총 619건 중 263건(42.5%)의 B. cereus를 분리하였지만, 식품의약품안전처의 식품공전에서 즉석섭취 편의식품류에 대한 B. cereus에 대한 규격기준이 1,000 CFU/g 이하로, 본 실험에서는 규정 범위를 초과한 식품은 없었다. B. cereus 총 263개 분리균주에 대한 9종류의 장내독소 및 1종류의 구토독소를 분석한 결과, NHE complex (nheA, nheB, nheC)중 3개의 nhe 유전자를 모두 보유한 B. cereus는 236개 균주(89.7%), 1개만의 독소를 가지고 있는 균주는 2개(0.8%)뿐이었다. 또한, HBL complex (hblA, hblB, hblD) 중 3개의 hbl 유전자를 보유한 균주는 175개 균주(66.5%), 그리고 한개 혹은 두 개의 hbl 유전자를 가진 균주는 59개 균주(21.7%), 3개 유전자를 모두 가지고 있지 않은 균주는 29개 분리균주(11.0%)로 나타났다. NHE complex 유전자의 빈도가 HBL complex 유전자 보다 더 높게 나타나는 특징을 확인할 수 있었다. 장내독소 entFM, $cytK_2$, bceT 유전자의 보유율은 각각 100, 100, 43.0% 순으로 확인되었다. B. cereus의 구토 독소인 CER 유전자는 평균 50.2%를 보유하고 있었으며, 식품유형에 따라 식중독 보존식, 즉석섭취 식품, 편의식품에서 각각 100, 59.4, 35.6% 순으로 나타났다. 식품 중 분리한 B. cereus가 산생하는 구토독소를 가지고 있는 B. cereus 균주 중 29.4%에서 8개의 장내독소를 보유하고 있었으며, 나머지 균주들도 대부분 5-8개의 장내독소를 가지고 있는 것으로 확인되었다. 따라서 본 연구 결과를 종합해보면, 식품에서 분리한 B. cereus는 대부분의 균주가 설사형 및 구토형 독소를 보유하고 있어, 즉석 섭취 편의식품의 미생물 오염 요인들은 계절에 관계없이 지속적으로 위생적인 관리가 필요할 것으로 사료된다. 또한, 식품의 미생물적 안전성 확보를 위해서는 업체의 생산단계부터 저장 및 운반을 포함한 유통단계 등에서 식중독을 유발 할 수 있는 오염원들이 내재되어 있기 때문에 철저한 개인 및 환경 위생관리가 필요할 것으로 사료된다.

Keywords

References

  1. Bahk GJ, Chun SJ, Park KH, Hong CH, Kim JW. Survey on the foodborne illness experience and awareness of food safety practice among korean consumers. J. Fd. Hyg. Safety. 18: 139-145 (2003)
  2. Choi JW, Park SY, Yeon JH, Lee MJ, Chung DH, Lee KH, Kim MG, Lee DH, Kim KS, Ha SD. Microbial contamination levels of fresh vegetables distributed in Markets. J. Fd. Hyg. Safety. 20: 43-47 (2005)
  3. Ministry of food and drug safety. Available from: http://www.mfds.go.kr/e-stat/index.do. accessed Dec. 31, 2013.
  4. Cartwright EJ, Jackson KA, Johnson SD, Graves LM, Silk BJ, Mahon BE. Listeriosis outbreaks and associated food vehicles, United States, 1998-2008. Emerg Infect Dis. 19: 1-9 (2013) https://doi.org/10.3201/eid1901.120393
  5. Kim JB, Kim JM, Cho SH, Oh HS, Choi NJ, Oh DH. Toxin genes profiles and toxin production ability of Bacillus cereus isolated from clinical and food samples. J. Food Sci. 76: 25-29 (2011)
  6. Jo MJ, Jeong AR, Kim HJ, Lee NR, Oh SW, Kim YJ, Chun HS, Koo MS. Microbiological quality of fresh-cut produce and organic vegetables. Korean J. Food Sci. Technol. 43: 91-97 (2011) https://doi.org/10.9721/KJFST.2011.43.1.091
  7. Cho YS, Jung EY, Lee MK, Yang CY, Shin DB. Survival, isolation and characterization of Bacillus cereus from Sunshik. J. Fd. Hyg. Safety. 23: 343-347 (2008)
  8. Kotiranta A, Lounatmaa K, Haapasalo M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2: 189-198 (2000) https://doi.org/10.1016/S1286-4579(00)00269-0
  9. Stenfors Arnesen LP, Fagerlund A, Granum PE. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579-606 (2008) https://doi.org/10.1111/j.1574-6976.2008.00112.x
  10. Drobniewski FA. Bacillus cereus and related species. Clin. Microbiol. Rev. 6: 324-338 (1993)
  11. Ehling-Schulz M, Guinebretiere MH, Monthan A, Berge O, Fricker M, Svensson B. Toxin gene profiling of enterotoxin and emetic Bacillus cereus. FEMS Microbiol. Lett. 260: 232-240 (2006) https://doi.org/10.1111/j.1574-6968.2006.00320.x
  12. Kang TM, Cho SK, Park JY, Song KB, Chung MS, Park JH. Analysis of microbial contamin ation of sprouts and fresh-cut salads in a market. Korean J. Food Sci. Technol. 43: 490-494 (2011) https://doi.org/10.9721/KJFST.2011.43.4.490
  13. Ministry of Food and Drug Safety. Korean Food Standard Code. 5-29-34-35. Korea Food & Drug Administration, Seoul, Korea (2012)
  14. Yang IC, Shih DY, Huang TP, Huang YP, Wang JY, Pan TM. Establishment of a novel multiplex PCR assay and detection of toxigenic strains of the species in the Bacillus cereus group. J. Food Protect. 68: 2123-2130 (2005)
  15. Guinebretiere MH, Fagerlund A, Granum PE, Nguyen-The C. Rapid discrimination of cytK-1 and cytK-2 genes in Bacillus cereus strains by a novel duplex PCR system. FEMS Microbiol. Lett. 259: 74-80 (2006) https://doi.org/10.1111/j.1574-6968.2006.00247.x
  16. Horwood PF, Burgess GW, Oakey HJ. Evidence for non-ribosomal peptide synthetase production of cereulide (the emetic toxin) in Bacillus cereus. FEMS Microbiol. Lett. 236: 319-324 (2004) https://doi.org/10.1111/j.1574-6968.2004.tb09664.x
  17. Ehling-Schulz M, Svensson B, Guinebretiere MH, Lindbck T, Andersson M, Schulz A, Fricker M, Christiansson A, Granum PE, Mrtlbauer E, Nguyen-The C, Salkinoja-Salonen M, Scherer S. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151: 183-197 (2005) https://doi.org/10.1099/mic.0.27607-0
  18. Ngamwongsatit P, Buasri W, Pianariyanon P, Pulsrikarn C, Ohba M, Assavanig A, Panbangred W. Broad distribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int. J. Food Microbiol. 121: 352-356 (2008) https://doi.org/10.1016/j.ijfoodmicro.2007.11.013
  19. Guinebretire MH, Broussolle V, Nguyen-The C. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40: 3053-3056 (2002) https://doi.org/10.1128/JCM.40.8.3053-3056.2002
  20. Lee N, Sun JM, Kwon KY, Kim HJ, Koo M, Chun HS. Genetic diversity, antimicrobial resistance, and toxigenic profiles of Bacillus cereus strains isolated from Sunsik. J. Food Protect. 75: 225-230 (2012) https://doi.org/10.4315/0362-028X.JFP-11-317
  21. Beecher DJ, Schoeni JL, Wong AC. Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect. Immun. 63: 4423-4428 (1995)
  22. Zhou G, Liu H, He J, Yuan Y, Yuan Z. The occurrence of Bacillus cereus, B. thuringiensis and B. mycoides in Chinese pasteurized full fat milk. Int. J. Food Microbiol. 121: 195-200 (2008) https://doi.org/10.1016/j.ijfoodmicro.2007.11.028
  23. Hsieh YM, Sheu SJ, Chen YL, Tsen HY. Enterotoxigenic profiles and polymerase chain reaction detection of Bacillus cereus group cells and B. cereus strains from foods and foodborne outbreaks. J. Appl. Microbiol. 87: 481-490 (1999) https://doi.org/10.1046/j.1365-2672.1999.00837.x
  24. Kim JB, Kim JM, Kim CH, Seo KS, Park YB, Choi NJ, Oh DH. Emetic toxin producing Bacillus cereus Korean isolates contain genes encoding diarrheal-related enterotoxins. Int. J. Food Microbiol. 144: 182-186 (2010) https://doi.org/10.1016/j.ijfoodmicro.2010.08.021
  25. Rahmati T, LabbR. Levels and toxigenicity of Bacillus cereus and Clostridium perfringens from retail seafood. J. Food Protect. 71: 1178-1185 (2008)
  26. Chon JW, Kim JH, Lee SJ, Hyeon JY, Song KY, Park C, Seo KH. Prevalence, phenotypic traits and molecular characterization of emetic toxin-producing Bacillus cereus strains isolated from human stools in Korea. J. Appl. Microbiol. 112: 1042-1049 (2012) https://doi.org/10.1111/j.1365-2672.2012.05277.x
  27. Chon JW, Kim JH, Lee SJ, Hyeon JY, Seo KH. Toxin profile, antibiotic resistance, and phenotypic and molecular characterization of Bacillus cereus in Sunsik. Food Microbiol. 32: 217-222 (2012) https://doi.org/10.1016/j.fm.2012.06.003
  28. Achtman M, van der Ende A, Zhe P, Koroleva IS, Kusecek B, Morelli G, Schuurman IG, Bieske N, Zurth K, Kostyukova NN, Paltonov AE. Molecular epidemiology of serogroup a meningitis in Moscow, 1969 to 1997. Emerg. Infect. Dis. 7: 420-427 (2001) https://doi.org/10.3201/eid0703.017309
  29. Healy B, Mullane N, Collin V, Mailler S, Iversen C, Chatellier S, Storrs M, Fanning S. Evaluation of an automated repetitive sequence-based PCR system for subtyping Enterobacter sakazakii. J. Food Protect. 71: 1372-1378 (2008)
  30. Hyeon JY, Chon JW, Hwang IG, Kwak HS, Kim MS, Kim SK, Choi IS, Song CS, Park C, Seo KH. Prevalence, antibiotic resistance, and molecular characterization of Salmonella serovars in retail meat products. J. Food Protect. 74: 161-166 (2011) https://doi.org/10.4315/0362-028X.JFP-10-327
  31. Cherif A, Brusetti L, Borin S, Rizzi A, Boudabous A, Khyami-Horani H, Daffonchio D. Genetic relationship in the 'Bacillus cereus group' by Rep-PCR fingerprinting and sequencing of a Bacillus anthracis-specific Rep-PCR fragment. J. Appl. Microbiol. 94: 1108-1119 (2003) https://doi.org/10.1046/j.1365-2672.2003.01945.x

Cited by

  1. Study on the Characteristics of Food-borne Pathogens Isolated from Students' Mobile Phones in Busan vol.42, pp.4, 2016, https://doi.org/10.5668/JEHS.2016.42.4.255