DOI QR코드

DOI QR Code

Effect of Trehalose on Rheological Properties of Bread Flour Dough

Trehalose가 빵용 반죽의 Rheology 특성에 미치는 영향

  • Kim, Young-Ja (Department of BioFood Science & Technology, Agriculture Livestock Graduate School, Konkuk University) ;
  • Lee, Jeong-Hoon (Department of Bioresources and Food Science, KonKuk University) ;
  • Chung, Koo-Chun (Department of Chemistry, KonKuk University) ;
  • Lee, Si-Kyung (Department of BioFood Science & Technology, Agriculture Livestock Graduate School, Konkuk University)
  • 김영자 (건국대학교 농축대학원 바이오식품공학과) ;
  • 이정훈 (건국대학교 생명자원 식품공학과) ;
  • 정구춘 (건국대학 화학과) ;
  • 이시경 (건국대학교 농축대학원 바이오식품공학과)
  • Received : 2014.01.23
  • Accepted : 2014.03.11
  • Published : 2014.06.30

Abstract

This study was conducted to evaluate the effect of trehalose on the rheological properties of bread flour dough. Farinographic and viscographic properties, pH, total titratable acidity (TTA), and fermentation power were analyzed for flour dough rheology. Flour dough containing trehalose showed greater water absorption capacity and longer development time. However the stability, degree of softening, and farinograph quality number (FQN) were lower for the trehalose-containing flour dough, however, these factors decreased with increasing amounts of trehalose. Trehalose did not affect the beginning of gelatinization temperature and maximum viscosity temperature of flour. The maximum viscosity was the lowest with 6% trehalose, the end of final holding period, breakdown and setback values decreased with increasing amounts of trehalose. Flour dough with 4% trehalose had the lowest pH value for 120 min fermentation at $30^{\circ}C$, and the highest TTA value. Addition of 4% and 6% trehalose showed larger fermentation volume of dough than the control. The results suggested that trehalose positively affected the rheological properties of flour dough such as bread volume, softness, and staling delay.

Trehalose가 밀가루 반죽의 rheology에 미치는 영향을 평가하기 위하여 밀가루 대비 설탕을 6% 첨가한 것을 대조구로 하여 trehalose를 각각 2, 4, 6% 첨가하여 farinograph, viscograph, 반죽의 pH 및 총산도, 반죽의 발효팽창력 등을 분석하였다. Farinograph 분석에서 trehalose 첨가량이 증가함에 따라 반죽의 견도와 반죽형성시간은 증가하였으나, 흡수율, 안정도, 약화도, FQN 등은 감소하였다. Viscograph 분석에서 trehalose 첨가가 호화개시온도, 최고점도온도에는 영향을 주지 못하였으나, 최고점도는 trehalose 6% 첨가구에서 가장 낮았다. Trehalose 첨가량이 증가할수록 최종점도, breakdown, setback 등은 감소하였다. 120분 발효 동안 반죽의 pH 변화는 trehalose 4% 첨가구가 가장 낮았고, 반죽의 총산도는 trehalose 4% 첨가구가 가장 높았다. 반죽의 발효팽창력도 trehalose 4% 첨가구가 다른 시험구에 비해 큰 부피를 나타냈다. 이상과 같이 trehalose 첨가량을 달리한 실험에서 trehalose의 첨가는 빵용 밀가루 반죽의 rheology 특성에 영향을 주어 빵 제조에 첨가 시 빵의 부피가 크고, 부드럽고, 노화가 지연될 것으로 생각된다.

Keywords

References

  1. Lee JH, Yun MS, Bog JH, Park DG, Son DH, U HS, Lee GJ, Jo HL. New Practical Bread & Cake. Jigumoonwhasa, Seoul, Korea. p. 34, p. 138 (2012)
  2. Piazza L, Masi P. Moisture redistribution throughout the bread loaf during staling and its effect on mechanical properties. Cereal Chem. 72: 320-325 (1995)
  3. Koch EM, Koch FC. The presence of trehalose in yeast. Science 61: 570-572 (1925)
  4. Birch GG. Trehalose. Vol. 18, pp. 201-225. In: Advances in Carbohydrate Chemistry. Wolfrom ML, Tyson RS (eds), Academic Press, New York, NY, USA (1963)
  5. Ohtake S, Wang YJ. Trehalose: Current use and future applications. J. Pharm. Sci. 100: 2020-2053 (2011) https://doi.org/10.1002/jps.22458
  6. Higashiyama T. Novel functions and applications of trehalose. Pure Appl. Chem. 74: 1263-1269 (2002)
  7. Miwa Y. Possibility of the use of trehalose in the field of alternative medicine. New Food Ind. 49: 20-30 (2007)
  8. Takeuchi K, Banno N. Function and application of trehalose (5): Application of cosmetical and pharmaceutical field. Fragrance J. 5: 101-103 (2000)
  9. Kubota M, Sawatani I, Oku K, Takeuchi K, Murai S. The development of ${\alpha},{\alpha}$-trehalose production and its applications. J. Appl. Glycosci. 51: 63-70 (2004) https://doi.org/10.5458/jag.51.63
  10. Kazuyuki O, Ikuo S, Sumio S, Mitsuyuki K, Kanou T, Sae M, Mayumi K, Michio K, Shigeharu F. Functional properties of trehalose. J. Appl. Glycosci. 49: 351-357 (2002) https://doi.org/10.5458/jag.49.351
  11. Kim SS, Chung HY. Retarding retrogradation of Korean rice cakes (Karedduk) with a mixture of trehalose and modified starch analyzed by Avrami kinetics. Korean J. Food Nutr. 23: 39-44 (2010)
  12. Vicente S, Nieto AB, Hodara K, Castro MA, Alzamora SM. Changes in structure, rheology, and water mobility of apple tissue induced by osmotic dehydration with glucose or trehalose. Food Bioprocess Tech. 5: 3075-3089 (2012) https://doi.org/10.1007/s11947-011-0643-2
  13. Meric L, Lambert-Guilois S, Neyreneuf O, Richard-Molard D. Cryoresistance of baker's yeast Saccharomyces cerevisiae in frozen dough: contribution of cellular trehalose. Cereal Chem. 72: 609-615 (1995)
  14. Zhou JC, Peng YF, Xu N. Effect of trehalose on fresh bread and bread staling. Cereal Food. World 52: 313-316 (2007)
  15. AACC. Approved Methods of the AACC. Method 54-21. American Association of Cereal Chemists, St. Paul, MN, USA (2000)
  16. AACC. Approved Methods of the AACC. Method 61-01. American Association of Cereal Chemists, St. Paul, MN, USA (2000)
  17. AACC. Approved Methods of the AACC. Method 02-52. American Association of Cereal Chemists, St. Paul, MN, USA (2000)
  18. AACC. Approved Methods of the AACC. Method 02-31. American Association of Cereal Chemists, St. Paul, MN, USA (2000)
  19. Chang YH, Lim ST, Yoo B. Dynamic rheology of corn-starch-sugar composites. J. Food Eng. 64: 521-527 (2004) https://doi.org/10.1016/j.jfoodeng.2003.08.017
  20. Salvador A, Sanz T, Fiszman SM. Dynamic rheological characteristics of wheat flour-water doughs. Effect of adding NaCl, sucrose and yeast. Food Hydrocolloid. 20: 780-786 (2006) https://doi.org/10.1016/j.foodhyd.2005.07.009
  21. Tong Q, Zhang X, Wu F, Tong J, Zhang P, Zhang J. Effect of honey powder on dough rheology and bread quality. Food Res. Int. 43: 2284-2288 (2010) https://doi.org/10.1016/j.foodres.2010.08.002
  22. Rosell CM, Collar C. Effect of temperature and consistency on wheat dough performance. Int. J. Food Sci. Tech. 44: 493-502 (2009) https://doi.org/10.1111/j.1365-2621.2008.01758.x
  23. Rosell CM, Foegeding A. Interaction of hydroxypropyl methylcellulose with gluten proteins: small deformation properties during thermal treatment. Food Hydrocolloid. 21: 1092-1100 (2007) https://doi.org/10.1016/j.foodhyd.2006.08.003
  24. Jang JK, Lee SH, Cho SC, Pyun YR. Effect of sucrose on glass transition, gelatinization, and retrogradation of wheat starch. Cereal Chem. 78: 186-192 (2001) https://doi.org/10.1094/CCHEM.2001.78.2.186
  25. Beleia A, Miller RA, Hoseney RC. Starch gelatinization in sugar solutions. Starch-Starke 48: 259-262 (1996) https://doi.org/10.1002/star.19960480705
  26. Derby RI, Miller BS, Miller BF, Trimbo HB. Visual observations of wheat-starch gelatinization in limited water systems. Cereal Chem. 52: 702-713 (1975)
  27. Oh MH, Shin HC, Park JD, Lee HY, Kim KS, Kum JS. Effect of added trehalose and enzymes on the qualities of backsulgie. J. Korean Soc. Food Sci. Nutr. 39: 992-998 (2010) https://doi.org/10.3746/jkfn.2010.39.7.992
  28. D'Appolonia BL. Effect of bread ingredients on starch gelatinization properties as measured by the amylograph. Cereal Chem. 49: 532-543 (1972)
  29. Holmes JT, Hoseney RC. Chemical leavening: Effect of pH and certain ions on breadmaking properties. Cereal Chem. 64: 343-348 (1987)
  30. Bloksma AH. Rheology of the breadmaking process. Cereal Food. World 35: 228-236 (1990)
  31. Tlapale-Valdivia AD, Chanona-Perez J, Mora-Escobedo R, Farrera-Rebollo RR, Gutierrez-Lopez GF, Calderon-Dominguez G. Dough and crumb grain changes during mixing and fermentation and their relation with extension properties and bread quality of yeasted sweet dough. Int. J. Food Sci. Tech. 45: 530-539 (2010) https://doi.org/10.1111/j.1365-2621.2009.02161.x
  32. Anjum FM, Sabir MZ, Khan MI, Pasha I. Sugar utilization behavior of yeast (Saccharomyces cerevisae) types and doses on bread quality. Nutr. Food Sci. 40: 395-402 (2010) https://doi.org/10.1108/00346651011062041
  33. Wehrle K, Grau H, Arendt EK. Effects of lactic acid, acetic acid and table salt on fundamental rheological properties of wheat dough. Cereal Chem. 74: 739-744 (1997) https://doi.org/10.1094/CCHEM.1997.74.6.739
  34. Doerry WT, Ross A, Baker A. Liquid preferments: A study of factors affecting fermentation parameters and bread quality. Tech. Bull. Am. Inst. Baking 7: 1-9 (1985)
  35. Lee KS. Baking Technology. B&C World Co, Ltd., Seoul, Korea. pp. 161-163 (1997)
  36. Nwaka S, Holzer H. Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Prog. Nucleic Acid Re. 58: 197-237 (1997) https://doi.org/10.1016/S0079-6603(08)60037-9
  37. Huang W, Kim Y, Li X, Rayas-Duarte P. Rheofermentometer parameters and bread specific volume of frozen sweet dough influenced by ingredients and dough mixing temperature. J. Cereal Sci. 48: 639-646 (2008) https://doi.org/10.1016/j.jcs.2008.02.008
  38. Salas-Mellado MM, Chang YK. Effect of formulation on the quality of frozen bread dough. Braz. Arch. Biol. Techn. 46: 461-468 (2003) https://doi.org/10.1590/S1516-89132003000300018
  39. Diniz-Mendes L, Bernardes E, de Araujo PS, Panek AD, Paschoalin VMF. Preservation of frozen yeast cells by trehalose. Biotechnol. Bioeng. 65: 572-578 (1999) https://doi.org/10.1002/(SICI)1097-0290(19991205)65:5<572::AID-BIT10>3.0.CO;2-7

Cited by

  1. Effects of Addition of Gelatinized Wheat Flour Dough on Pan Bread vol.45, pp.10, 2016, https://doi.org/10.3746/jkfn.2016.45.10.1467
  2. Comparison of Imported Wheat Flour Bread Making Properties and Korean Wheat Flour Bread Making Properties Made by Various Bread Making Methods vol.44, pp.3, 2015, https://doi.org/10.3746/jkfn.2015.44.3.434
  3. Effect of Fructose on the Quality of the Bread added with Sugar Alcohol vol.29, pp.6, 2016, https://doi.org/10.9799/ksfan.2016.29.6.889
  4. Free sugar, amino acid, and beta-glucan content in Lentinula edodes strains collected from different areas vol.14, pp.2, 2016, https://doi.org/10.14480/JM.2016.14.2.27