DOI QR코드

DOI QR Code

Seasonal Variability of Internal Tides around the Korea Strait: 3-D High-resolution Model Simulation

대한해협주변 내부조석의 계절적 변동성: 3차원 고해상도 모델 연구

  • Lee, Hyun Jung (Korea Polar Research Institute, KIOST) ;
  • Lee, Ho Jin (School of Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Park, Jae-Hun (School of Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Ha, Ho Kyung (Korea Polar Research Institute, KIOST)
  • 이현정 (한국해양과학기술원 부설 극지연구소) ;
  • 이호진 (한국해양대학교 해양과학기술전문대학원) ;
  • 박재훈 (한국해양대학교 해양과학기술전문대학원) ;
  • 하호경 (한국해양과학기술원 부설 극지연구소)
  • Received : 2013.12.16
  • Accepted : 20140230
  • Published : 2014.03.30

Abstract

This study investigates spatial and temporal variations in the generation and propagation of internal tides around the Korea Strait using a three-dimensional high resolution model (Regional Ocean Modeling System; ROMS). The model results were verified through comparison with in-situ current measurements from an array of 12 acoustic Doppler current profilers (ADCPs) deployed in the Korea Strait. Fluxes and distributions of internal tidal energy were calculated using simulation results gathered in February and August. Our analyses reveal that energetic semidiurnal internal tides are generated in a region around the Korea Strait shelf break ($35.5^{\circ}N$, $130^{\circ}{\sim}130.5^{\circ}E$), where the strong cross-slope semidiurnal barotropic tidal currents interact with a sudden topographical change. The semidiurnal internal tidal energy generated in summer displays values about twice as large as values in winter. Propagation of semidiurnal internal tides also reveals seasonal variability. In February, most of the semidiurnal internal tides propagate only into the open basin of the East Sea due to weak stratification in the Korea Strait, which inhibits their southwestward propagation. In August, they propagate southwestward to $35.2^{\circ}N$ along the western channel of the Korea Strait because of strong stratification. In addition, semidiurnal internal tides generated in a region west of Tsushima Island are found to propagate to the coast of Busan. This can be explained by the intensified stratification due to the strong intrusion of bottom cold water in the western channel of the Korea Strait during summer.

Keywords

References

  1. 김 구, 노홍길, 이상호 (1991) 하계 제주도 주변 해역의 수계 및 해수순환. 한국해양학회지 바다 26:262-277 (Kim K, Rho H-K, Lee SH (1991) Water masses and circulation around Cheju-Do in summer. J Korean Soc Oceanogr 26:262-277 (in Korean))
  2. 김인옥, 노홍길 (1994) 제주도 주변해역에 출현하는 중국 대륙연안수에 관한 연구. 한국수산학회지 27:515-528(Kim I-O, Rho H-K (1994) A Study on China Coastal Water Appeared in the Neighbouring Seas of Cheju Island. Korean Fish Soc 27:515-528 (in Korean))
  3. 김충기, 장경일, 박경, 석문식 (2000) 한국 남해의 해수순환: 2차원 순압모델. 한국해양학회지 바다 5(4):257-226(Kim CK, Chang KI, Park K, Suk MS (2000) The South Sea Circulation of Korea: Two-dimensional Barotrophic Model. J Korean Soc Oceanogr 5(4):257-226 (in Korean))
  4. 서승남 (2008) 한국 주변해역 30초 격자 수심: KorBathy30s. 한국해안해양공학회지 20(1):110-120(Seo S-N (2008) Digital 30sec Gridded Bathymetric Data of Korea Marginal Seas-KorBathy30s. J Korea Soc Coastal Ocean Eng 20(1):110-120 (in Korean))
  5. 이길하 (2007) 우리나라 연안 기온과 수온의 비선형 상관관계 분석. 한국해안해양공학회지 19(2):128-135(Lee K-H (2007) Nolinear correlation analysis between air and water temperatures in the coastal zone, Korea. J Korea Soc Coastal Ocean Eng 19(2):128-135 (in Korean))
  6. 조양기, 김구 (1994) 여름철 남해 저온수의 특성과 기원. 한국해양학회지 바다 29(4):414-421(Cho Y-K, Kim K (1994) Characteristics and Origin of the Cold Water in the South Sea of Korea in Summer. J Korean Soc Oceanogr 29(4):414-421 (in Korean))
  7. 최병호, 방인권, 김경환 (1994) 대한해협조류의 3차원분포. 한국해안해양공학회지 6:421-438(Choi BH, Bang IK, Kim KH (1994) Vertical Distribution of Tidal Current in the Korea Strait. J Korea Soc Coastal Ocean Eng 6:421-438 (in Korean))
  8. Chapman DC (1985) Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J Phys Oceanogr 15:1060-1075 https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2
  9. Chang KI, Kim CK, Lee SW, Shim TB (1997) Barotropic circulation of the South Sea-preliminary model results. Ocean Res 19:139-152
  10. Baines PG (1982) On internal tide generation models. Deep-Sea Res 29:307-338 https://doi.org/10.1016/0198-0149(82)90098-X
  11. Book JW, Pistek P, Perkins H, Thompson KR, Teague WJ, Jacobs GA, Suk MS, Chang KI, Lee JC, Choi BH (2004) Data Assimilation Modeling of the Barotropic Tides in the Korea/Tsushima Strait. J Oceanogr 60:977-977 https://doi.org/10.1007/s10872-005-0006-6
  12. Fang G (1986) Tide and tidal current charts for the marginal seas adjacent to China. Chin J Oceanol Limn 4:1-16 https://doi.org/10.1007/BF02850393
  13. Fairal CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air-sea fluxes in TOGA COARE. J Geophys Res 101:3747-3767 https://doi.org/10.1029/95JC03205
  14. Flather RA (1976) A tidal model of the northwest European continental shelf. Mem Soc R Sci Liege 6(10):141-164
  15. Griffin DA, Van Loan CF (1996) The adjoint method of data assimilation used operationally for shelf circulation. J Geophys Res 101(C2):3457-3477 https://doi.org/10.1029/95JC03218
  16. Kurapov AL, Egbert GD, Allen, JS, Miller RN, Erofeeva SY, Kosro PM (2003) The M2 internal tide off Oregon: Inferences from data assimilation. J Phys Oceanogr 33: 1733-1757 https://doi.org/10.1175/2397.1
  17. Lie HJ, Cho CH (1997) Surface current fields in the eastern East China Sea. J Korean Soc Oceanogr 32:1-7
  18. Marchesiello P, McWilliams JC, Shchepetkin AF (2001) Open boundary conditions for long-term intergration of regional ocean models. Ocean Model 3:1-20 https://doi.org/10.1016/S1463-5003(00)00013-5
  19. Mellor GL, Yamada T (1982) Developement of a turbulence closure model for geophysical fluid problems. Rev Geophys 20:851-875 https://doi.org/10.1029/RG020i004p00851
  20. Niwa Y, Hibiya T (2001) Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J Geophys Res 106:22441-22449 https://doi.org/10.1029/2000JC000770
  21. Niwa Y, Hibiya T (2004) Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J Geophys Res 109:C04027. doi:10.1029/2003JC001923
  22. Odamaki M (1989) Tides and tidal currents in the Tsushima Strait. J Oceanogr Soc Japan 45:65-82 https://doi.org/10.1007/BF02108795
  23. Pack JH, Watts DR (2006) Internal Tides in the Southwestern Japan/East Sea. J Phys Oceanogr 36:22-34 https://doi.org/10.1175/JPO2846.1
  24. Smagorinsky J (1963) General circulation experiments with the primitive equations, I. The basic experiment. Mon Weather Rev 91:99-164 https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  25. Takikawa T, Ogihara T, Neriai C, Morimoto A (2013) Observation on internal tidal waves of bottom cold water in western channel of the Tsushima Straits. Proceedings of the 17th Pacific-Asian Marginal Seas Meeting, 565-568.
  26. Teague WJ, Perkins HT, Jacobs GA, Book JW (2001) Tide observations in the Korea-Tsushima strait. Cont Shelf Res 21(5):545-561 https://doi.org/10.1016/S0278-4343(00)00110-2
  27. Teague WJ, Jacobs GA, Perkins HT, Book JW (2002) Low-Frequency Current Observations in the Korea/Tsushima Strait. J Phys Oceanogr 32:1621-1641 https://doi.org/10.1175/1520-0485(2002)032<1621:LFCOIT>2.0.CO;2
  28. Teague, WJ, Ko DS, Jacobs GA, Perkins HT, Book JW, Smith SR, Chang KI, Suk M-S, Kim K, Lyu SJ, and Tang TY (2006) Currents through the Korea/Tsushima Strait: A review of LINKS observations. Oceanogr 19:50-63

Cited by

  1. Port governance in Korea: Revisited vol.22, 2017, https://doi.org/10.1016/j.rtbm.2016.11.002
  2. Simulation of Temporal Variation of Acoustic Transmission Loss by Internal Tide in the Southern Sea of Jeju Island in Summer vol.34, pp.1, 2015, https://doi.org/10.7776/ASK.2015.34.1.012