DOI QR코드

DOI QR Code

Comparative Study on Antioxidant Effects of Extracts from Rubus coreanus and Rubus occidentalis

토종 복분자 Rubus coreanus와 외래종 복분자 Rubus occidentalis 추출물의 항산화능 비교

  • Kim, Lee Seon (Department of Food Science and Technology, Seoul National University of Science and Technology) ;
  • Youn, Sang Hyuck (Department of Food Science and Technology, Seoul National University of Science and Technology) ;
  • Kim, Ji Yeon (Department of Food Science and Technology, Seoul National University of Science and Technology)
  • 김이선 (서울과학기술대학교 식품공학과) ;
  • 윤상혁 (서울과학기술대학교 식품공학과) ;
  • 김지연 (서울과학기술대학교 식품공학과)
  • Received : 2014.05.02
  • Accepted : 2014.06.22
  • Published : 2014.09.30

Abstract

This study compared the antioxidant effects of two kinds of black raspberry extract, obtained from fruits of Rubus coreanus and Rubus occidentalis, which can be found in Korea. The fruits of R. coreanus and R. occidentalis were each extracted with 0%, 25%, 50%, 75%, and 100% ethanol (EtOH). Among the extracts of these two varieties, 50% EtOH extract of R. occidentalis showed the highest contents of total polyphenols ($46.96{\pm}2.78mg/g$) and flavonoid compounds ($11.77{\pm}0.81mg/g$). The 50% EtOH extract of R. occidentalis showed the highest antioxidant activity ($84.77{\pm}0.97%$) in terms of DPPH radical scavenging activity. On the contrary, 25% EtOH extract of R. occidentalis showed the best antioxidant activity ($29.65{\pm}2.41%$) in terms of ABTS radical scavenging activity. In the results of ferric reducing antioxidant power (FRAP) assay, 50% EtOH extract of R. occidentalis showed the highest antioxidant activity ($0.49{\pm}0.02%$). In the cytotoxicity test stimulated with $H_2O_2$, the extracts of 75% and 100% EtOH from R. occidentalis showed the highest cell viability ($93.54{\pm}3.37%$ and $97.19{\pm}0.74%$, respectively). According to our results, extracts of R. occidentalis showed higher antioxidant activities than extracts of R. coreanus. Especially, total polyphenol and flavonoid contents of R. occidentalis showed the highest significant correlation with FRAP by Pearson's correlation (P=0.005 and P=0.013, respectively).

본 연구에서는 토종 복분자와 외래종 복분자의 항산화 활성과 장세포 산화스트레스 보호의 차이를 알아보기 위해 총 폴리페놀 및 플라보노이드 함량, DPPH 및 ABTS 라디칼소거능, FRAP assay를 이용한 환원력을 비교 조사하였고, 사람의 장내 세포인 Caco-2 cell에 과산화수소를 이용하여 자극시켜 장세포 산화스트레스 보호를 확인하였다. 총 폴리페놀 및 플라보노이드 함량은 외래종 복분자가 유의적으로 높은 것으로 나타났다. ABTS 라디칼 소거능과 FRAP assay을 이용한 환원력에서도 외래종 복분자가 유의적으로 높은 것으로 나타났으나 DPPH 라디칼 소거능은 토종과 외래종 복분자 모두 비슷하게 나타났다. 장세포 산화스트레스 보호 역시 외래종 복분자가 유의적으로 높게 나타났다. 항산화 성분과 항산화 활성의 상관관계는 모두 유의하게 양의 상관관계를 보이는 것으로 나타났으며, FRAP value가 가장 높은 상관관계를 보이는 것으로 확인되었다. 따라서 FRAP value가 높았던 외래종 복분자 100% EtOH 추출물이 폴리페놀 함량, 플라보노이드 함량, ABTS 라디칼 소거능, DPPH 라디칼 소거능, 장세포 산화스트레스 보호능 모두 높은 추출물로 확인되었다.

Keywords

References

  1. Bae GH. 2000. The medicinal plants of Korea. Kyohak Publishing Co., Seoul, Korea. p 231.
  2. Pang KC, Kim MS, Lee MW. 1996. Hydrolyzable tannins from the fruits of Rubus coreanum. Kor J Pharmacogn 27:366-370.
  3. Lee MW. 1995. Phenolic compounds from the leaves of Rubus coreanum. Yakhak Hoeji 39: 200-204.
  4. Lee YA, Lee LM. 1995. Tannins from Rubus coreanum. Kor J Pharmacogn 26: 27-30.
  5. Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP. 2005. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol 139: 652-663. https://doi.org/10.1104/pp.105.064238
  6. Koundouras S, Marions V, Gkoulioti A, Kotseridis Y, van Leeuwen C. 2006. Effects on wine phenolic and aroma components. J Agric Food Chem 54: 5077-5086. https://doi.org/10.1021/jf0605446
  7. Watson R, Wright CJ, Mcburney T, Taylor AJ, Linforth RS. 2002. Influence of harvest date and light integral on the development of strawberry flavour compounds. J Exp Bot 53: 2121-2129. https://doi.org/10.1093/jxb/erf088
  8. Moon GS. 1991. Constituents and uses of medicinal herbs. Ilweolseogak, Seoul, Korea. p 310-311.
  9. Wang SY, Lin HS. 2000. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem 48:140-146. https://doi.org/10.1021/jf9908345
  10. Liu Z, Schwimer J, Liu D, Greenway FL, Anthony CT, Woltering EA. 2005. Raspberry extract and fractions contain angiogenesis inhibitors. J Agric Food Chem 53: 3909-3951. https://doi.org/10.1021/jf048585u
  11. Stoner GD, Chen T, Kresty LA, Aziz RM, Reinemann T, Nines R. 2006. Protection against esophageal cancer in rodents with lyophilized berries: potential mechanisms. Nutr Cancer 54: 33-46. https://doi.org/10.1207/s15327914nc5401_5
  12. Kim JM. 2011. Characteristics of Rubus coreanus Miq. fruits at different ripening stages. Korean J Food Sci Technol 43: 341-347. https://doi.org/10.9721/KJFST.2011.43.3.341
  13. Yang HM, Lim SS, Lee YS, Shin HK. 2007. Comparison of the anti-inflammatory rffects of the extracts from Rubus coreanus and Rubus occidentalis. Korean J Food Sci Technol 39: 342-347.
  14. Lee S, You Y, Kim K, Park J, Jeong C, Jhon DY, Jun W. 2012. Antioxidant activities of native Gwangyang Rubus coreanus Miq. J Korean Soc Food Sci Nutr 41: 327-332. https://doi.org/10.3746/jkfn.2012.41.3.327
  15. Park Y, Choi S, Kim SH, Han JG, Chung HG. 2007. Changes in antioxidant activity, total phenolics and vitamin C content during fruit ripening in Rubus occidentalis. Korean J Plant Res 20: 461-465.
  16. Hayes JE, Allen P, Brunton N, O'Grady MN, Kerry JP. 2011. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical product: olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chem 126: 948-955. https://doi.org/10.1016/j.foodchem.2010.11.092
  17. Mandrioli R, Mercolini L, Ferranti A, Fanali S, Raggi MA. 2011. Determination of aloe emodin in Aloe vera extracts and commercial formulations by HPLC with tandem UV absorption and fluorescence detection. Food Chem 126:387-393. https://doi.org/10.1016/j.foodchem.2010.10.112
  18. Marinova D, Ribarova F, Atanassova M. 2005. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J Univ Chem Technol Metall 40: 255-260.
  19. Goupy P, Hugues M, Boivin P, Amiot MJ. 1999. Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J Sci Food Agric 79: 1625-1634. https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1625::AID-JSFA411>3.0.CO;2-8
  20. Jeon YS, Jo BS, Park HJ, Kang SA, Cho YJ. 2012. Screening of biological activity of Caragana sinica extracts. J Korean Soc Food Sci Nutr 41: 1211-1219. https://doi.org/10.3746/jkfn.2012.41.9.1211
  21. Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of ''antioxidant power'': the FRAP assay. Anal Biochem 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  22. Thongchai W, Liawruangrath B, Liawruangrath S. 2009. Flow injection analysis of total curcuminoids in turmeric and antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl assay. Food Chem 112: 494-499. https://doi.org/10.1016/j.foodchem.2008.05.083
  23. Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, Yang Z, Li S. 2013. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol 54: 270-275. https://doi.org/10.1016/j.ijbiomac.2012.12.037
  24. Chen HJ, Ho CH. 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45: 2374-2378. https://doi.org/10.1021/jf970055t
  25. Yang HY, Steele WF. 1958. Removal of excessive anthocyanin pigment by enzyme. Food Technol 12: 517-519.
  26. Re R, Pellegrinni N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1996. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237.
  27. Loganayaki N, Suganya N, Manian S. 2012. Evaluation of edible flowers of agathi (Sesbania grandiflora L. Fabaceae) for in vivo anti-inflammatory and analgesic, and in vitro antioxidant potential. Food Sci Biotechnol 21: 509-517. https://doi.org/10.1007/s10068-012-0065-6
  28. Joung CH, Bac YI, Prak SJ, Lee SK, Hur SJ. 2012. Antioxidant activity of aqueous extracts from three cultivars of guava leaf. Food Sci Biotechnol 21: 1557-1563. https://doi.org/10.1007/s10068-012-0207-x
  29. Jun HI, Kim YA, Kim YS. 2014. Antioxidant activities of Rubus coreanus Miquel and Morus alba L. fruits. J Korean Soc Food Sci Nutr 43: 381-388. https://doi.org/10.3746/jkfn.2014.43.3.381
  30. Moure A, Cruz JM, Franco D, Domínguez JM, Sineiro J, Dominguez H, Jose Nunez M, Parajo JC. 2001. Natural antioxidants from residual sources. Food Chem 72: 145-171. https://doi.org/10.1016/S0308-8146(00)00223-5
  31. Yang HJ, Park MJ, Lee HS. 2011. Antioxidative activities and components of Gardenia jasminoides. Korean J Food Sci Technol 43: 51-57. https://doi.org/10.9721/KJFST.2011.43.1.051
  32. Lee MY, Yoo MS, Whang YJ, Jin YJ, Hong MH, Pyo YH. 2012. Vitamin C, total polyphenol flavonoid contents and antioxidant capacity of several fruit peels. Korean J Food Sci Technol 44: 540-544. https://doi.org/10.9721/KJFST.2012.44.5.540

Cited by

  1. Antioxidant Activities of Ethanol Extracts from Different Parts of the Black Raspberry (Rubus occidentalis) Obtained Using Ultra-sonication vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.504
  2. Phenolic composition of fruits from different cultivars of red and black raspberries grown in Poland vol.52, 2016, https://doi.org/10.1016/j.jfca.2016.08.003
  3. Rubus occidentalis: The black raspberry—its potential in the prevention of cancer vol.68, pp.1, 2016, https://doi.org/10.1080/01635581.2016.1115095
  4. Integration of Traditional and Metabolomics Biomarkers Identifies Prognostic Metabolites for Predicting Responsiveness to Nutritional Intervention against Oxidative Stress and Inflammation vol.9, pp.3, 2017, https://doi.org/10.3390/nu9030233
  5. Comparison of ellagic acid contents in Korean and Chinese cultivated species of unripe black raspberries vol.25, pp.5, 2018, https://doi.org/10.11002/kjfp.2018.25.5.549
  6. Antioxidant activity and contents of leaf extracts obtained from Dendropanax morbifera LEV are dependent on the collecting season and extraction conditions pp.2092-6456, 2019, https://doi.org/10.1007/s10068-018-0352-y
  7. 남성생식세포 Sertoli cell에 미치는 복분자(覆盆子)의 항산화 효과 vol.26, pp.2, 2014, https://doi.org/10.14374/hfs.2018.26.2.103
  8. 성숙도에 따른 복분자 열매의 미백 활성 비교 vol.53, pp.2, 2014, https://doi.org/10.4163/jnh.2020.53.2.121
  9. Analytical method validation of ellagic acid as an antioxidative marker compound of the Rubus occidentalis extract vol.28, pp.5, 2014, https://doi.org/10.11002/kjfp.2021.28.5.663
  10. Development of fruit color in Rubus chingii Hu (Chinese raspberry): A story about novel offshoots of anthocyanin and carotenoid biosynthesis vol.311, pp.None, 2021, https://doi.org/10.1016/j.plantsci.2021.110996
  11. Sanguiins-Promising Molecules with Broad Biological Potential vol.22, pp.23, 2014, https://doi.org/10.3390/ijms222312972