DOI QR코드

DOI QR Code

인장변형에 따른 그래핀복합 카본블랙전극의 저항변화연구

A Study on the Electrical Resistivity of Graphene Added Carbon Black Composite Electrode with Tensile Strain

  • Lee, T.W. (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, H.S. (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, H.H. (Department of Materials Science and Engineering, Yonsei University)
  • 투고 : 2015.03.09
  • 심사 : 2015.03.25
  • 발행 : 2015.03.30

초록

신축성 전극소재는 웨어러블 밴드나 전자피부와 같은 플렉서블 제품으로의 적용 때문에 주목 받고 있다. 플렉서블 소자로서 사용하기 위해선 구부리거나 비틀거나 늘리는 등 물리적 변형에도 전기저항의 증가가 최소화되어야 한다. 카본블랙은 저가의 간단한 공정, 특히 인장 시 비저항의 감소라는 장점 때문에 후보소재로 고려되고 있다. 하지만 카본블랙의 전도도는 전극으로 사용되기에 상대적으로 낮다. 이에 비해 그래핀은 뛰어난 전기전도도 및 유연성 때문에 촉망받고 있는 전자소재이다. 따라서 그래핀을 첨가한 카본블랙은 신축성 전극으로 적합한 소재로 예상된다. 본 논문을 통해 인장 시 그래핀을 첨가한 카본전극의 전기적 특성을 연구하였다. 기계적인 인장은 전극 내의 균열(crack)을 형성시켜 도전경로의 파괴를 일으켰다. 하지만 인장으로 정렬된 그래핀은 카본필러 간의 연결성을 강화하고 도전구조를 유지하였다. 무엇보다도 그래핀 첨가로 인하여 인장 시 카본전극의 전자구조가 변화하여 전자를 효과적으로 전도하게 하였다. 결론적으로 그래핀 첨가를 통해 카본블랙 복합체에 신축성 전극으로의 가능성을 부여하였다.

Stretchable electrode materials are focused to apply to flexible device such as e-skin and wearable computer. Used as a flexible electrode, increase in electrical resistance should be minimalized under physical strain as bend, stretch and twist. Carbon black is one of candidates, for it has many advantages of low cost, simple processing, and especially reduction in resistivity with stretching. However electrical conductivity of carbon black is relatively low to be used for electrodes. Instead graphene is one of the promising electronic materials which have great electrical conductivity and flexibility. So it is expected that graphene added carbon black may be proper to be used for stretchable electrode. In this study, under stretching electrical property of graphene added carbon black composite electrode was investigated. Mechanical stretching induced cracks in electrode which means breakage of conductive path. However stretching induced aligned graphene enhanced connectivity of carbon fillers and maintained conductive network. Above all, electronic structure of carbon electrode was changed to conduct electrons effectively under stretching by adding graphene. In conclusion, an addition of graphene gives potential of carbon black composite as a stretchable electrode.

키워드

참고문헌

  1. J. Park, S. Wang, M. Li, C. Ahn, J. K. Hyun and D. S. Kim, "Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors", Nat. Commun., 3, 916 (2012). https://doi.org/10.1038/ncomms1929
  2. J. H. Kim, M. W. Chon and S. H. Choa, "Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices", J. Microelectron. Packag. Soc., 21(2), 1 (2014). https://doi.org/10.6117/KMEPS.2014.21.2.001
  3. T. W. Lee and H. H. Park, "The Effect of Graphene on the Electrical Properties of a Stretchable Carbon Electrode", J. Microelectron. Packag. Soc., 21(4), 77 (2014). https://doi.org/10.6117/kmeps.2014.21.4.077
  4. J. A. Rogers, T. Someya and Y. Huang, "Materials and Mechanics for Stretchable Electronics", Science, 327, 1603 (2010). https://doi.org/10.1126/science.1182383
  5. S. Rosset and H. R. Shea, "Flexible and stretchable electrodes for dielectric elastomer actuators", Appl. Phys. A, 110, 281 (2013). https://doi.org/10.1007/s00339-012-7402-8
  6. A. Chortos and Z. Bao, "Skin-inspired electronic devices", Mater Today, 17, 321 (2014). https://doi.org/10.1016/j.mattod.2014.05.006
  7. J. Lee, J. Wu, M. Shi, J. Yoon, S. I. Park, M. Li, Z. Liu, Y. Huang and J. A. Rogers, "Stretchable GaAs Photovoltaics with Designs That Enable High Areal Coverage", Adv. Mater., 23, 986 (2011). https://doi.org/10.1002/adma.201003961
  8. D. H. Kim, J. Song, W. M. Choi, H. S. Kim, R. H. Kim, Z. Liu, Y. Y. Huang, K. C. Hwang, Y. Zhang and J. A. Rogers, "Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations", Proc. Natl. Acad. Sci., 105(48), 18675 (2008). https://doi.org/10.1073/pnas.0807476105
  9. P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee and S. H. Ko, "Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network", Adv. Mater., 24(25), 3326 (2012). https://doi.org/10.1002/adma.201200359
  10. T. A. Kim, H. S. Kim, S. S. Lee and M. Park, "Single-walled carbon nanotube/silicone rubber composites for compliant electrodes", Carbon, 50, 444 (2012). https://doi.org/10.1016/j.carbon.2011.08.070
  11. N. C. Das, T. K. Chaki and D. Khastgir, "Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites", Polym. Int., 51(2), 156 (2002). https://doi.org/10.1002/pi.811
  12. L. Flandin, A. Hiltner and E. Baer, "Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene-octene elastomer", Polymer, 42(2), 827 (2001). https://doi.org/10.1016/S0032-3861(00)00324-4
  13. Y. Sun, H. D. Bao, Z. X. Guo and J. Yu, "Modeling of the Electrical Percolation of Mixed Carbon Fillers in Polymer-Based Composites", Macromolecules, 42(1), 459 (2009). https://doi.org/10.1021/ma8023188
  14. T. W. Lee, Ch. S. Park and H. H. Park, "The effect of ballmilling on the dispersion of carbon nanotubes: the electrical conductivity of carbon nanotubes-incorporated ZnO", J. Ceram. Soc. Jpn., 122(8), 1 (2014). https://doi.org/10.2109/jcersj2.122.1
  15. M. Wen, X. Sun, L. Su, J. Shen, J. Li and S. Guo, "The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion", Polymer, 53(7), 1602 (2012). https://doi.org/10.1016/j.polymer.2012.02.003
  16. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim and K. S. Kim, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature, 457(7230), 706 (2009). https://doi.org/10.1038/nature07719
  17. L. Bokobza, M. Rahmani, C. Belin, J. L. Bruneel and N. E. Bounia, "Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers", Journal of Polymer Science Part B: Polymer Physics, 46(18), 1939 (2008). https://doi.org/10.1002/polb.21529
  18. A. K. Geim and K. S. Novoselov, "The rise of graphene", 6, 183 (2007). https://doi.org/10.1038/nmat1849
  19. P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong and K. H. Nam, "Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network", Adv. Mater., 24(25), 3326 (2012). https://doi.org/10.1002/adma.201200359
  20. L. Flandin, A. Chang, S. Nazarenko, A. Hiltner and E. Baer, "Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers", J. Appl. Polym. Sci., 76(6), 894 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<894::AID-APP16>3.0.CO;2-K
  21. S. P. Rwei, F. H. Ku and K. C. Cheng, "Dispersion of carbon black in a continuous phase: Electrical, rheological, and morphological studies", Colloid and Polymer Science, 280(12), 1110 (2002). https://doi.org/10.1007/s00396-002-0718-8
  22. K. Yamaguchi, J. J. C. Busfield and A. G. Thomas, "Electrical and mechanical behavior of filled elastomers. I. The effect of strain", Journal of Polymer Science Part B: Polymer Physics, 41(17), 2079 (2003). https://doi.org/10.1002/polb.10571
  23. S. Stasio and A. Braun, "Comparative NEXAFS Study on Soot Obtained from an Ethylene/Air Flame, a Diesel Engine, and Graphite", Energy & Fuels, 20(1), 187 (2006). https://doi.org/10.1021/ef058019g
  24. D. Pacile, M. Papagno, A. Fraile Rodriguez, M. Grioni, L. Papagno, C. O. Girit, J. C. Meyer, G. E. Begtrup and A. Zettl, "Near-Edge X-Ray Absorption Fine-Structure Investigation of Graphene", PRL., 101, 066806 (2008). https://doi.org/10.1103/PhysRevLett.101.066806
  25. N. E. Nickles, "The role of bandgap in the secondary electron emission of small bandgap semiconductors: Studies of graphitic carbon", Utah State University, UMI Dissertations Publishing (2002).
  26. Y. Fukahori and W. Seki, "Stress analysis of elastomeric materials at large extensions using the finite element method", J. Mater. Sci., 29(10), 2767 (1994). https://doi.org/10.1007/BF00356831