DOI QR코드

DOI QR Code

Performance Evaluation of Hydrogen Generation System using NaBH4 Hydrolysis for 200 W Fuel Cell Powered UAV

200 W급 연료전지 무인기를 위한 NaBH4 가수분해용 수소발생시스템의 성능평가

  • Oh, Taek-Hyun (Division of Aerospace Engineering, School of Mechanical, Aerospace and Systems Engineering, KAIST) ;
  • Kwon, Sejin (Division of Aerospace Engineering, School of Mechanical, Aerospace and Systems Engineering, KAIST)
  • Received : 2014.10.13
  • Accepted : 2015.03.05
  • Published : 2015.04.01

Abstract

The concentration of solute in a $NaBH_4$ solution is limited due to the low solubility of $NaBO_2$. The performance of a hydrogen generation system was evaluated using various concentrations of $NaBH_4$ solution. First, a self-hydrolysis test and a hydrogen generation test for 30 min were performed. The composition of $NaBH_4$ solution was selected to be 1 wt% NaOH + 25 wt% $NaBH_4$+74wt% $H_2O$ by considering the amount of hydrogen loss, stability of hydrogen generation, $NaBO_2$ precipitation, conversion efficiency, and the purpose of its application. A hydrogen generation system for a 200 W fuel cell was evaluated for 3 h. Although hydrogen generation rate decreased with time due to $NaBO_2$ precipitation, hydrogen was produced for 3 h (conversion efficiency: 87.4%). The energy density of the 200 W fuel cell system was 263 Wh/kg. A small unmanned aerial vehicle with this fuel cell system can achieve 1.5 times longer flight time than one flying on batteries.

무인기 운용 환경을 고려하여 다양한 조성의 $NaBH_4$ 용액을 사용해 수소발생시스템의 성능 평가를 수행하였다. 먼저, 자발가수분해와 30분의 수소발생실험을 수행하였다. 수소의 손실, 안정한 수소 발생, $NaBO_2$의 석출, 전환 효율과 무인기의 운용을 고려하여 $NaBH_4$ 용액의 조성을 1 wt% NaOH + 25 wt% $NaBH_4$+74wt% $H_2O$로 결정하였다. 200 W급 연료전지 시스템을 위해 장시간 수소발생실험도 수행되었다. 비록 $NaBO_2$의 석출로 인해서 수소 발생률이 감소하였지만, 200 W 연료전지를 위한 수소를 3시간동안 발생(전환 효율: 87.4%)시켰다. 600 Wh의 에너지를 갖는 200 W급 연료전지 시스템의 에너지 밀도는 263 Wh/kg이었다. 기존 배터리 무인기에 비해 약 1.5배 이상의 체공 시간을 달성할 수 있다.

Keywords

References

  1. Bradley, T. H., Moffitt, B. A., Mavris, D. N., and Parekh, D. E., "Development and experimental characterization of a fuel cell powered aircraft," J Power Sources, Vol. 171, 2007, pp.793-801. https://doi.org/10.1016/j.jpowsour.2007.06.215
  2. Lee, C. J., Kim, T., "Characteristic of hydrogen generation from solid-state NaBH4 and fuel cell operation for fuel cell aircraft," J Korean Society for Aeronautical & Space Sciences, Vol. 39(9), 2011, pp.858-865. https://doi.org/10.5139/JKSAS.2011.39.9.858
  3. Lee, B. H., Park, P., Kim, C., Yang, S., Ahn, S., "Power characteristic variation simulation of hybrid electric propulsion system for small UAV," J Korean Society for Aeronautical & Space Sciences, Vol. 39(11), 2011, pp.1052-1059. https://doi.org/10.5139/JKSAS.2011.39.11.1052
  4. Kim, K., Kim, T., Lee, K., and Kwon, S., "Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles," J Power Sources, Vol. 196, 2011, pp.9069-9075. https://doi.org/10.1016/j.jpowsour.2011.01.038
  5. Kim, T., and Kwon, S., "Design and development of a fuel cell-powered small unmanned aircraft," Int J Hydrogen Energy, Vol. 37, 2012, pp.615-622. https://doi.org/10.1016/j.ijhydene.2011.09.051
  6. Lee, C. J., Kim, T., "The study on characteristics of solid-state NaBH4 hydrogen generation and supply system for fuel cell UAV," J Korean Society for Aeronautical & Space Sciences, Vol. 40(10), 2012, pp.901-909. https://doi.org/10.5139/JKSAS.2012.40.10.901
  7. Hong, J. S., Jung, W. C., Kim, H. J., Lee, M. J., Jeong, D. S., Jeon, C. S., Sung, H. G., Shin, S. J., Nam, S. W., "Fuel cell system for SUAV using chemical hydride I. Lightweight hydrogen generation and control system," J Korean Society for Aeronautical & Space Sciences, Vol. 41(3), 2013, pp.226-232. https://doi.org/10.5139/JKSAS.2013.41.3.226
  8. Hong, J. S., Park, J. G., Sung, M. H., Jeon, C. S., Sung, H. G., Shin, S. J., Nam, S. W., "Fuel cell system for SUAV using chemical hydride II. Lightweight fuel cell propulsion system," J Korean Society for Aeronautical & Space Sciences, Vol. 41(3), 2013, pp.233-239. https://doi.org/10.5139/JKSAS.2013.41.3.233
  9. Kim, T., "$NaBH_4$(sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell," Energy, Vol. 69, 2014, pp.721-727. https://doi.org/10.1016/j.energy.2014.03.066
  10. Seo, J. E., Kim, Y., Kim, Y., Kim, K., Lee, J. H., Lee, D. H., Kim, Y., Shin, S. J., Kim, D. M., Kim, S. Y., Kim, T., Yoon, C. W., and Nam, S. W., "Portable ammonia-borane-based $H_2$ power-pack for unmanned aerial vehicles," J Power Sources, Vol. 254, 2014, pp.329-337. https://doi.org/10.1016/j.jpowsour.2013.11.112
  11. Xu, D., Zhang, H., and Ye, W., "Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/C catalyst," Catal Commun, Vol. 8, 2007, pp.1767-1771. https://doi.org/10.1016/j.catcom.2007.02.028
  12. Liang, Y., Dai, H. B., Ma, L. P., Wang, P., and Cheng, H. M., "Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst," Int J Hydrogen Energy, Vol. 35, 2010, pp.3023-3028. https://doi.org/10.1016/j.ijhydene.2009.07.008
  13. Eom, K., Cho, K., and Kwon, H., "Effects of electroless deposition conditions on microstructures of cobalt-phosphorous catalysts and their hydrogen generation properties in alkaline sodium borohydride solution," J Power Sources, Vol. 180, 2008, pp.484-490. https://doi.org/10.1016/j.jpowsour.2008.01.095
  14. Patel, N., Fernandes, R., and Miotello, A., "Hydrogen generation by hydrolysis of $NaBH_4$ with efficient Co-P-B catalyst: a kinetic study," J Power Sources, Vol. 188, 2009, pp.411-420. https://doi.org/10.1016/j.jpowsour.2008.11.121
  15. Eom, K., and Kwon, H., "Effects of deposition time on the $H_2$ generation kinetics of electroless-deposited cobalt-phosphorous catalysts from $NaBH_4$ hydrolysis, and its cyclic durability," Int J Hydrogen Energy, Vol. 35, 2010, pp.5220-5226. https://doi.org/10.1016/j.ijhydene.2010.03.005
  16. Liang, Y., Wang, P., and Dai, H. B., "Hydrogen bubbles dynamic template preparation of a porous Fe-Co-B/Ni foam catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution," J Alloys Compd, Vol. 491, 2010, pp.359-365. https://doi.org/10.1016/j.jallcom.2009.10.183
  17. Oh, T. H., and Kwon, S., "Effect of manufacturing conditions on properties of electroless deposited Co-P/Ni foam catalyst for hydrolysis of sodium borohydride solution," Int J Hydrogen Energy, Vol. 37, 2012, pp.15925-15937. https://doi.org/10.1016/j.ijhydene.2012.08.053
  18. Oh, T. H., and Kwon, S., "Effect of bath composition on properties of electroless deposited Co-P/Ni foam catalyst for hydrolysis of sodium borohydride solution," Int J Hydrogen Energy, Vol. 37, 2012, pp.17027-17039. https://doi.org/10.1016/j.ijhydene.2012.08.083
  19. Oh, T. H., and Kwon, S., "Performance evaluation of hydrogen generation system with electroless-deposited Co-P/Ni foam catalyst for $NaBH_4$ hydrolysis," Int J Hydrogen Energy, Vol. 38, 2013, pp.6425-6435. https://doi.org/10.1016/j.ijhydene.2013.03.068
  20. Hua, D., Hanxi, Y., Xinping, A., and Chuansin, C., "Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst," Int J Hydrogen Energy, Vol. 28, 2003, pp.1095-1100. https://doi.org/10.1016/S0360-3199(02)00235-5
  21. Liu, B. H., Li, Z. P., and Suda, S., "Solid sodium borohydride as a hydrogen source for fuel cells," J Alloys Compd, Vol. 468, 2009, pp.493-498. https://doi.org/10.1016/j.jallcom.2008.01.023
  22. Kreevoy, M. M., and Jacobson R. W., "The rate of decomposition of $NaBH_4$ in basic aqueous solutions," Ventron Alembic, Vol. 15, 1979, pp.2-3.