DOI QR코드

DOI QR Code

Performance Analysis of the Pintle Thruster Using 1-D Simulation -I : Steady State Characteristics

1-D 시뮬레이션을 활용한 핀틀추력기의 성능해석 -I : 정상상태 특성

  • Kim, Jihong (Department of Aerospace Engineering, Graduate School at Chungnam National University) ;
  • Noh, Seonghyeon (Department of Aerospace Engineering, Graduate School at Chungnam National University) ;
  • Huh, Hwanil (Department of Aerospace Engineering, Chungnam National University)
  • Received : 2015.03.06
  • Accepted : 2015.03.19
  • Published : 2015.04.01

Abstract

Pintle thrusters use pintle stroke to change nozzle throat area, and this controls thrust. Using MATLAB, one-dimensional simulation has been investigated and the results are compared to those of cold flow tests and computational fluid dynamics for the pintle thruster of Chungnam National University. The prediction based on one-dimensional flow theory shows good agreement with measurements for chamber pressure, but deviates for thrust, partly because of nozzle wall separation. Computational results show that nozzle wall separation occurs at an early stage of nozzle expansion, near the design nozzle throat, for the course of pintle strokes. Empirical thrust prediction incorporates nozzle wall separation, and thus 1-D simulation using empirical thrust prediction showed good results for an early stage of pintle stroke.

핀틀추력기는 추력조절을 위해 노즐목면적을 조절하는 핀틀 스트로크 개념을 사용한다. 충남대학교에서 수행한 공압시험용 핀틀추력기에 대해 MATLAB을 사용하여 1-D 시뮬레이션 성능예측 기법을 연구하였고 전산수치해석과 1-D 시뮬레이션을 수행하여 결과를 비교하였다. 일차원 유동이론에 근거한 성능예측결과는 챔버압력에 대해 경향성 뿐만 아니라 계산값까지 유사한 것을 확인하였지만, 노즐벽면의 박리로 인해 추력에 대해서는 오차가 존재하였다. 수치해석 결과로 모든 핀틀 스트로크 구간에서 노즐의 확장부 부분의 설계 노즐목 부근에서 유동박리가 발생하는 것을 확인하였다. 엠피리컬(Empirical) 추력예측 법은 노즐벽면의 박리를 포함하며, 1-D 엠피리컬 시뮬레이션은 초기 핀틀 스트로크 구간에서 추력을 잘 예측하였다.

Keywords

References

  1. Kim, J., and Park, J., "Thrust modulation performance analysis of pintle-nozzle motor", Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 37, No. 4, 2009, pp. 392-398 https://doi.org/10.5139/JKSAS.2009.37.4.392
  2. Napior, J., and Garmy, V., "Controllable Solid Propulsion for Launch Vehicle and Spacecraft Application", The 57th International Astronautical Congress, Spain Kovalam West, 2006.
  3. P. Caubet, "Divert and Attitude Control System for Interceptors", 1st AAAF International Conference on Missile Defense, 2003
  4. Jin, J., Ha, D., and Oh, S., "Experimental Study and Performance Analysis of the Solid Rocket Motor with Pintle Nozzle" , Journal of the Korean Society of Propulsion Engineers, Vol. 18, No. 5, 2014, pp.19-28 https://doi.org/10.6108/KSPE.2014.18.5.019
  5. Jeong, K., Heo, J., and Sung, H., "Thrust Characteristics of Through-type Pintle Nozzles with Large Scale Separation Flow", 2014 KSPE Spring Conference, pp.32-38
  6. Lee, J., Park, B., and Chang, H., "Analysis of the pintle nozzle characteristics -I : Steady state performance", 2012 KSPE Fall Conference, pp.355-361
  7. Ko, H., Lee, J., and Chang, H., "Analysis of the pintle nozzle characteristics - I : Unsteady performance", 2012 KSPE Fall Conference, pp.362-366
  8. Choi, J., and Huh, H., "Steady State Experimental Study of Pintle Shape for Modulatable Thruster Applications", 2011 KSPE Spring Conference, pp.153-156
  9. Lee, J., "A Study on the Static and Dynamic Characteristics of Pintle-Perturbed Conical Nozzle Flows", Ph. D. Dissertation, Dept. of Mechanical Engineering, Yonsei University, South Korea, 2012.
  10. Kalt S. and David L. Badal, "Conical Rocket Nozzle Performance under Flow- Separated Conditions", Journal of Spacecraft and Rocket, Vol. 2, No. 3, 1965
  11. Summerfield, M., Foster, C., and Swan, W., "Flow Separation in Overexpanded Supersonic Exhaust Nozzles", Jet Propulsion, Vol. 24, No. 5, 1954, pp.319-321