DOI QR코드

DOI QR Code

Polymer Waveguide Apodized Grating for Narrow-Bandwidth High-Reflectivity Wavelength Filters

협대역 고반사 파장 필터 구현을 위한 폴리머 광도파로 에포다이즈드 격자

  • Lee, Won-Jun (Nano-Bio Photonics Lab., Department of Electronic Engineering, Pusan National University) ;
  • Huang, Guanghao (Nano-Bio Photonics Lab., Department of Electronic Engineering, Pusan National University) ;
  • Shin, Jin-Soo (Photonic Networks Research Lab., Department of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Oh, Min-Cheol (Nano-Bio Photonics Lab., Department of Electronic Engineering, Pusan National University)
  • 이원준 (부산대학교 전자공학과 나노바이오광소자연구실) ;
  • 황광호 (부산대학교 전자공학과 나노바이오광소자연구실) ;
  • 신진수 (한국과학기술원 전자공학과 광네트워크연구실) ;
  • 오민철 (부산대학교 전자공학과 나노바이오광소자연구실)
  • Received : 2015.05.08
  • Accepted : 2015.06.17
  • Published : 2015.08.25

Abstract

Wavelength filters are essential components for selecting a certain wavelength channel of a WDM optical communication system. To realize wavelength filters with narrow bandwidth and high reflectivity, an apodized grating structure with length of 15 mm and index modulation of $5{\times}10^{-4}$ was designed. The device exhibited a reflectivity of 95%, 3-dB bandwidth of 0.28 nm, and 20-dB bandwidth of 0.70 nm on an 18 mm grating length.

파장 투과 대역폭이 좁으면서도 반사율이 높은 파장 필터를 구현하기 위해서 격자의 반사율이 진행 방향을 따라 서서히 변하는 구조의 에포다이즈드 격자 구조를 폴리머 광도파로와 함께 제작하였다. 격자로 인한 유효 굴절률 변화가 $5{\times}10^{-4}$인 경우에 대하여 에포다이즈드 격자의 길이에 따른 반사율 변화를 설계하였으며 길이가 15 mm 이상이 되는 경우에 반사율이 99%에 도달함을 확인하였다. 길이가 서로 다른 여러 개의 격자를 제작하여 반사율, 3-dB 대역폭, 20-dB 대역폭을 측정하였으며, 격자 길이가 18 mm인 소자에서 95%의 반사율을 얻을 수 있었고, 이때 3-dB 대역폭은 0.28 nm, 그리고 20-dB 대역폭은 0.70 nm의 특성을 가짐을 확인하였다.

Keywords

References

  1. M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, "Polymeric wavelength filters with polymer gratings," Appl. Phys. Lett. 72, 1559-1561 (1998). https://doi.org/10.1063/1.121114
  2. D. Sadot and E. Boimovich, "Tunable optical filters for dense WDM networks," IEEE Commun. Mag. 36, 50-55 (1998).
  3. Y. J. Rao, "Recent progress in applications of in-fibre Bragg grating sensors," Opt. Laser. Eng. 31, 297-324 (1999). https://doi.org/10.1016/S0143-8166(99)00025-1
  4. T. L. Yeo, T. Sun, and K. T. V. Grattan, "Fibre-optic sensor technologies for humidity and moisture measurement," Sens. Actuators A-Phys. 144, 280-295 (2008). https://doi.org/10.1016/j.sna.2008.01.017
  5. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997). https://doi.org/10.1109/50.618377
  6. L. Domash, M. Wu, N. Nemchuk, and E. Ma, "Tunable and switchable multiple-cavity thin film filters," J. Lightwave Technol. 22, 126-135 (2004). https://doi.org/10.1109/JLT.2004.823349
  7. M. Lequime, R. Parmentier, F. Lemarchand, and C. Amra, "Toward tunable thin-film filters for wavelength division multiplexing applications," Appl. Opt. 41, 3277-3284 (2002). https://doi.org/10.1364/AO.41.003277
  8. R. Parmentier and M. Lequime, "Substrate-strain-induced tunability of dense wavelength-division multiplexing thin-film filters," Opt. Lett. 28, 728-730 (2003). https://doi.org/10.1364/OL.28.000728
  9. B. Yu, G. Pickrell, and A. Wang, "Thermally tunable extrinsic Fabry-Perot filter," IEEE Photon. Technol. Lett. 16, 2296-2298 (2004). https://doi.org/10.1109/LPT.2004.833890
  10. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, "Widely tunable MEMS-based Fabry-Perot filter," J. Microelectromech. Syst. 18, 905-908 (2009). https://doi.org/10.1109/JMEMS.2009.2024793
  11. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997). https://doi.org/10.1109/50.618377
  12. A. Iocco, H. G. Limberger, R. P. Salathé, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, "Bragg grating fast tunable filter for wavelength division multiplexing," J. Lightwave Technol. 17, 1217-1221 (1999). https://doi.org/10.1109/50.774258
  13. M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, "Tunable wavelength filters with Bragg gratings in polymer waveguides," Appl. Phys. Lett. 73, 2543-2545 (1998). https://doi.org/10.1063/1.122527
  14. D. Sadot and E. Boimovich, "Tunable optical filters for dense WDM networks," IEEE Commun. Mag. 36, 50-55 (1998).
  15. J. Singh, A. Khare, and S. Kumar, "Design of gaussian apodized fiber Bragg grating and its applications," Int. J. Eng. Sci. and Technol. 2, 1419-1424 (2010).
  16. S. F. Zhou, L. Reekie, H. P. Chan, K. M. Luk, and Y. T. Chow, "Apodization of terahertz Bragg gratings in subwavelength polymer fiber," Opt. Lett. 38, 2807-2809 (2013). https://doi.org/10.1364/OL.38.002807