DOI QR코드

DOI QR Code

랩스케일 정삼투실험을 통한 정삼투막의 수투과도 평가

Evaluation of water permeability of forward osmosis membranes using osmotically driven membrane test

  • Lee, Junseo (Department of civil engineering, Pukyong National University) ;
  • Kim, Suhan (Department of civil engineering, Pukyong National University)
  • 투고 : 2016.06.28
  • 심사 : 2016.08.04
  • 발행 : 2016.08.15

초록

Desalination is a key technology to overcome water shortage problem in a near future. High energy consumption is an Achilles' heel in desalination technology. Osmotically driven membrane processes like forward osmosis(FO) was introduced to address this energy issue. Characterizing membrane properties such as water permeability(A), salt permeability(B), and the resistance to salt diffusion within the support layer($K_{ICP}$) are very important to predict the performance of scaled-up FO processes. Currently, most of researches reported that the water permeability of FO membrane was measured by reverse osmosis(RO) type test. Permeating direction of RO and FO are different and RO test needs hydraulic pressure so that several problems can be occurred(i.e. membrane deformation, compaction and effect of concentration polarization). This study focuses on measuring water permeability of FO membrane by FO type test results in various experimental conditions. A statistical approach was developed to evaluate the three FO membrane properties(A, B, and $K_{ICP}$) and it predicted test result by the internal and external concentration polarization model.

키워드

참고문헌

  1. Cath, T.Y., Childress, A.E., Elimelech, M. (2006). Forward osmosis: principles, applications, and recent developments. J. Membr. Sci., 281(1-2), 70-87. https://doi.org/10.1016/j.memsci.2006.05.048
  2. Cath, T.Y., Elimelech, M., McCutcheon, J.R., McGinnis, R.L., Achilli, A., Anastasio, D., Brady, A.R., Childress, A.E., Farr, I.V., Hancock, N.T., Lampi, J., Nghiem, L.D., Xie, M., Yip, N.Y. (2013). Standard methodology for evaluating membrane performance in osmotically driven membrane processes, Desalination, 312, 31-38. https://doi.org/10.1016/j.desal.2012.07.005
  3. Kim, B., Lee, S., Hong, S. (2014). A novel analysis of reverse draw and feed solute fluxes in forward osmosis membrane process, Desalination, 352, 128-135. https://doi.org/10.1016/j.desal.2014.08.012
  4. Kim, C., Lee, S., Shon, H.K., Elimelech, M., Hong, S. (2012). Boron transport in forward osmosis: Measurements, mechanisms, and comparison with reverse osmosis, J. Membr. Sci., 419-420, 42-48. https://doi.org/10.1016/j.memsci.2012.06.042
  5. Kim, S. (2014). Scale-up of osmotic membrane bioreactors by modelling salt accumulation and draw solution dilution using hollow-fiber membrane characteristics and operation conditions, Bioresour. Technol., 165, 88-95. https://doi.org/10.1016/j.biortech.2014.03.101
  6. Kim, S., Park, H. (2005). Effective diameter for shear-induced diffusion for characterizing cake formation in crossflow microfiltration at polydisperse conditions, J. Environ. Eng., 131(6), 865-873. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:6(865)
  7. Lee, S., Boo, C., Elimelech, M., Hong, S. (2010). Comparison of fouling behaviour in forward osmosis (FO) and reverse osmosis (RO), J. Membr. Sci., 365, 34-39. https://doi.org/10.1016/j.memsci.2010.08.036
  8. Loeb, S., Titelman, L., Korngold, E., Freiman, J. (1997). Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. J. Membr. Sci., 129(2), 243-249. https://doi.org/10.1016/S0376-7388(96)00354-7
  9. McCutcheon, J.R., Elimelech, M. (2006). Influence of concentrative and dilutive internal concentration polarization on flux behaviour in forward osmosis, J. Membr. Sci., 284, 237-247. https://doi.org/10.1016/j.memsci.2006.07.049
  10. Moosemiller, M.D., Hill, C.G., Anderson, M.A. (1989). Physicochemical properties of supported ${\gamma}-Al2O3$ and TiO2 ceramic membranes, Sep. Sci. Technol., 24, 641. https://doi.org/10.1080/01496398908049798
  11. Park, S.H., Park, B., Shon, H.K., Kim, S. (2015). Modeling full-scale osmotic membrane bioreactor systems with high sludge retention and low salt concentration factor for wastewater reclamation. Bioresour. Technol., 190, 508-515. https://doi.org/10.1016/j.biortech.2015.03.094
  12. Phillip, W.A., Yong, J.S., Elimelech, M. (2010). Reverse draw solute permeation in forward osmosis: modeling and experiments, Environ. Sci. Technol., 44, 5170-5176. https://doi.org/10.1021/es100901n
  13. Tian, M., Qiu, C., Liao, T., Chou, S., Wang, R. (2013). Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates, Sep. Purif. Technol., 118, 721-736.
  14. Zhang, S., Wang, K.Y., Chung, T.-S., Chen, H., Jean, Y.C., Amy, G. (2010). Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer, J. Membr. Sci., 260, 522-535.
  15. Han, H., Zhang, S., Li, X., Widjojo. N., Chung. T.-S., (2012). Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection, Chem. Eng. Sci., 80, 219-231. https://doi.org/10.1016/j.ces.2012.05.033
  16. Lee, J., Choi, J.Y., Choi, J.-S., Chu, K.H., Yoon, Y., Kim, S. (2016). A statistics-based forward osmosis membrane characterization method without pressurized reverse osmosis experiment, Desalination, DOI: 10.1016/j.desal.2016.04.023.
  17. Lee, J., Kim, S. (2016). Predicting power density of pressure retarded osmosis (PRO) membranes using a new characterization method based on a single PRO test, Desalination, 389, 224-234. https://doi.org/10.1016/j.desal.2016.01.026
  18. Kim, S., Lim, J.-H. (2013). Effect of gas hydrate process on energy saving for reverse osmosis process in seawater desalination plant, Journal of Korean Society of Water and Wastewater, 27(6), 771-778. https://doi.org/10.11001/jksww.2013.27.6.771
  19. Suh, Dongwoo., Yoon, H., Yoon, J. (2015). Effect of hydraulic pressure on organic fouling in pressure retarded osmosis (PRO) process, Journal of Korean Society of Water and Wastewater, 29(1), 133-138. https://doi.org/10.11001/jksww.2015.29.1.133
  20. Kim, Bongchul., Boo, Chanhee., Lee, Sangyoup., Hong, Seungkwan. (2012). Evaluation of forward osmosis (FO) membrane performances in a non-pressurized membrane system, Journal of Korean Society of Water Environment, 28(2), 292-299.

피인용 문헌

  1. Performance evaluation of forward osmosis (FO) hollow fiber module with various operating conditions vol.32, pp.4, 2018, https://doi.org/10.11001/jksww.2018.32.4.357
  2. Performance Analysis of a Spiral Wound Forward Osmosis Membrane Module vol.40, pp.12, 2018, https://doi.org/10.4491/KSEE.2018.40.12.481