DOI QR코드

DOI QR Code

꾸지뽕(Cudrania tricuspidata) 잎으로부터 분리된 다당류 추출물의 면역 활성

Immunomodulatory Activity of Crude Polysaccharide Separated from Cudrania tricuspidata Leaf

  • Byun, Eui-Baek (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Jang, Beom-Su (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Sung, Nak-Yun (Department of Food Science and Technology, Kongju National University) ;
  • Byun, Eui-Hong (Department of Food Science and Technology, Kongju National University)
  • 투고 : 2016.04.12
  • 심사 : 2016.05.25
  • 발행 : 2016.08.31

초록

본 연구는 꾸지뽕 잎으로부터 추출된 다당류인 CTP의 처리가 면역세포의 활성에 미치는 영향에 관하여 평가하였다. CTP는 에탄올 침전법에 의하여 추출하였고, 면역 활성능의 평가는 대식세포주인 RAW 264.7 세포와 미분화 골수세포로부터 유도 분화시킨 대식세포 및 마우스 비장으로부터 유리시킨 비장세포에 CTP를 농도별로 처리하여 관찰하였다. 선천면역계에서 중요한 역할을 수행하는 대식세포에 CTP를 처리하였을 때 세포 증식률, NO 및 cytokine 분비능이 CTP 처리 농도 의존적으로 증가하는 것으로 관찰되었을 뿐만 아니라 비장세포에서도 이와 유사하게 세포 증식률이 증가하고 Th 1 type의 cytokine 분비능 또한 유의적으로 증가하는 것으로 관찰되었다. 이상의 결과로 미루어보아 꾸지뽕다당류 추출물인 CTP는 다양한 면역세포의 활성을 증가시키는 것으로 생각하며 이를 활용하여 다양한 식품 및 건강보조식품을 개발한다면 그 경제적 가치가 매우 클 것으로 생각한다.

The objective of this study was to evaluate the immunomodulatory activity of crude polysaccharide separated from Cudrania tricuspidata leaf. C. tricuspidata polysaccharide (CTP) was extracted by ethanol precipitation. Immunomodulation activity was tested in macrophage cells (RAW 264.7 and bone-marrow derived macrophage) and splenocytes. CTP treatment significantly increased cell proliferation up to $250{\mu}g/mL$ in both RAW 264.7 and bone-marrow derived macrophages. In this concentration range (below $250{\mu}g/mL$), nitric oxide and cytokine [tumor necrosis factor $(TNF)-{\alpha}$ and interleukin (IL)-6] production also significantly increased. Similarly, splenocyte proliferation dosedependently increased except for the $1,000{\mu}g/mL$ treated group. Regarding cytokine production activity in splenocytes, CTP treatment significantly increased production of Th 1 type cytokines [interferon $(IFN)-{\gamma}$] production but not Th 2 type cytokines (IL-4). Therefore, the results indicate that CTP may have a potential effect on immunomodulatory activity in various immune cells, and this is useful for development of immune enhancing adjuvant materials as a natural ingredient.

키워드

참고문헌

  1. Jung GT, Ju IO, Choi SR, You DH, Noh JJ. 2013. Food nutritional characteristics of fruit of Cudrania tricuspidata in its various maturation stages. Korean J Food Preserv 20: 330-335. https://doi.org/10.11002/kjfp.2013.20.3.330
  2. Park KH, Park YD, Han JM, Im KR, Lee BW, Jeong IY, Jeong TS, Lee WS. 2006. Anti-atherosclerotic and anti-inflammatory activities of catecholic xanthones and flavonoids isolated from Cudrania tricuspidata. Bioorg Med Chem Lett 16: 5580-5583. https://doi.org/10.1016/j.bmcl.2006.08.032
  3. Jeong GS, Lee DS, Kim YC. 2009. Cudratricusxanthone A from Cudrania tricuspidata suppresses pro-inflammatory mediators through expression of anti-inflammatory heme oxygenase-1 in RAW264.7 macrophages. Int Immunopharmacol 9: 241-246. https://doi.org/10.1016/j.intimp.2008.11.008
  4. Lee BW, Lee JH, Lee ST, Lee HS, Lee WS, Jeong TS, Park KH. 2005. Antioxidant and cytotoxic activities of xanthones from Cudrania tricuspidata. Bioorg Med Chem Lett 15: 5548-5552. https://doi.org/10.1016/j.bmcl.2005.08.099
  5. Shi L, Dong Q, Ding K. 2014. Structure elucidation and immunomodulatory activity in vitro of a xylan from roots of Cudrania tricuspidata. Food Chem 152: 291-296. https://doi.org/10.1016/j.foodchem.2013.11.091
  6. Ryu YB, Curtis-Long M, Lee JW, Kim JH, Kim JY, Kang KY, Lee WS, Park KH. 2009. Characteristic of neuraminidase inhibitory xanthones from Cudrania tricuspidata. Bioorg Med Chem 17: 2744-2750. https://doi.org/10.1016/j.bmc.2009.02.042
  7. Zheng ZP, Tan HY, Chen J, Wang M. 2013. Characterization of tyrosinase inhibitors in the twigs of Cudrania tricuspidata and their structure-activity relationship study. Fitoterapia 84: 242-247. https://doi.org/10.1016/j.fitote.2012.12.006
  8. Paulson JC. 1989. Glycoproteins: what are the sugar chains for?. Trends Biochem Sci 14: 272-276. https://doi.org/10.1016/0968-0004(89)90062-5
  9. Ruoslahti E. 1989. Proteoglycans in cell regulation. J Biol Chem 264: 13369-13372.
  10. Zhu H, Zhang Y, Zhang J, Chen D. 2008. Isolation and characterization of an anti-complementary protein-bound polysaccharide from the stem barks of Eucommia ulmoides. Int Immunopharmacol 8: 1222-1230. https://doi.org/10.1016/j.intimp.2008.04.012
  11. Bao X, Wang Z, Fang J, Li X. 2002. Structural features of an immunostimulating and antioxidant acidic polysaccharide from the seeds of Cuscuta chinensis. Planta Med 68: 237-243. https://doi.org/10.1055/s-2002-23133
  12. Hwang YC, Shin KS. 2008. Characterization of immuno-stimulating polysaccharides isolated from Korean persimmon vinegar. Korean J Food Sci Technol 40: 220-227.
  13. Lee MS, Shin KS. 2013. Macrophage activation by polysaccharides from Korean's commercial and traditional soy sauces. Korean J Food Nutr 26: 797-805. https://doi.org/10.9799/ksfan.2013.26.4.797
  14. Lee EH, Park HR, Shin MS, Cho SY, Chio HJ, Shin KS. 2014. Antitumor metastasis activity of pectic polysaccharide purified from the peels of Korean Citrus Hallabong. Carbohydr Polym 111: 72-79. https://doi.org/10.1016/j.carbpol.2014.04.073
  15. Ankathatti Munegowda M, Xu S, Freywald A, Xiang J. 2012. $CD4^+$ Th2 cells function alike effector Tr1 and Th1 cells through the deletion of a single cytokine IL-6 and IL-10 gene. Mol Immunol 51: 143-149. https://doi.org/10.1016/j.molimm.2012.02.120
  16. Skapenko A, Kalden JR, Lipsky PE, Schulze-Koops H. 2005. The IL-4 receptor $\alpha$-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing $CD25^+CD4^+$ regulatory T cells from $CD25^-CD4^+$ precursors. J Immunol 175: 6107-6116. https://doi.org/10.4049/jimmunol.175.9.6107
  17. Kim HM, Han SB, Oh GT, Kim YH, Hong DH, Hong ND, Yoo ID. 1996. Stimulation of humoral and cell mediated immunity by polysaccharide from mushroom Phellinus linteus. Int J Immunopharmacol 18: 295-303. https://doi.org/10.1016/0192-0561(96)00028-8
  18. Mahomoodally F, Mesaik A, Choudhary MI, Subratty AH, Gurib-Fakim A. 2012. In vitro modulation of oxidative burst via release of reactive oxygen species from immune cells by extracts of selected tropical medicinal herbs and food plants. Asian Pac J Trop Med 5: 440-447. https://doi.org/10.1016/S1995-7645(12)60075-3
  19. Yoshida Y, Wang MQ, Liu JN, Shan BE, Yamashita U. 1997. Immunomodulating activity of Chinese medicinal herbs and Oldenlandia diffusa in particular. Int J Immunopharmacol 19: 359-370. https://doi.org/10.1016/S0192-0561(97)00076-3
  20. Byun EB, Sung NY, Byun EH, Song DS, Kim JK, Park JH, Song BS, Park SH, Lee JW, Byun MW, Kim JH. 2013. The procyanidin trimer C1 inhibits LPS-induced MAPK and $NF-{\kappa}B$ signaling through TLR4 in macrophages. Int Immunopharmacol 15: 450-456. https://doi.org/10.1016/j.intimp.2012.11.021
  21. Kim K, Sohn H, Kim JS, Choi HG, Byun EH, Lee KI, Shin SJ, Song CH, Park JK, Kim HJ. 2012. Mycobacterium tuberculosis Rv0652 stimulates production of tumour necrosis factor and monocytes chemoattractant protein-1 in macrophages through the Toll-like receptor 4 pathway. Immunology 136: 231-240. https://doi.org/10.1111/j.1365-2567.2012.03575.x
  22. Kim JH, Sung NY, Byun EH, Kwon SK, Song BS, Choi JI, Yoon Y, Kim JK, Byun MW, Lee JW. 2009. Effects of $\gamma$-irradiation on immunological activities of $\beta$-glucan. Food Sci Biotechnol 18: 1305-1309.
  23. Morel F, Doussiere J, Vignais PV. 1991. The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem 201: 523-546. https://doi.org/10.1111/j.1432-1033.1991.tb16312.x
  24. Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, Ridnour LA, Colton CA. 2011. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89: 873-891. https://doi.org/10.1189/jlb.1010550
  25. Wang H, Actor JK, Indrigo J, Olsen M, Dasgupta A. 2003. Asian and Siberian ginseng as a potential modulator of immune function: an in vitro cytokine study using mouse macrophage. Clin Chim Acta 327: 123-128. https://doi.org/10.1016/S0009-8981(02)00343-1
  26. Ryu HS. 2008. Effects of Job's Tears (Yul-Moo) extracts on mouse splenocyte and macrophage cell activation. Korean J Food Nutr 21: 1-6.
  27. Cha JH, Kim YS, Lee EM. 2010. Effects of Prunellae Spica water extract on immune response in macrophage cells. J Oriental Obstet Gynecol 23: 91-100.
  28. Kim KO, Kim HS, Ryu HS. 2006. Effect of Sorghum bicolor L. Moench (Sorghum, su-su) water extracts on mouse immune cell activation. J Korean Diet Assoc 12: 82-88.
  29. Zalys R, Zagon IS, Bonneau RH, Lang CM, McLaughlin PJ. 2000. In vivo effects of chronic treatment with [$$Met^5$$]-enkephalin on hematological values and natural killer cell activity in athymic mice. Life Sci 66: 829-834. https://doi.org/10.1016/S0024-3205(99)00655-4
  30. Abbas AK, Lichtman AH. 2003. Cell and tissues of the immune system. In Cellular and Molecular Immunology. 5th ed. WB Saunders Co., Sydney, Australia. p 264-269.
  31. Wang JE, Jorgensen PF, Ellingsen EA, Almiof M, Thiemermann C, Foster SJ, Aasen AO, Solberg R. 2001. Peptidoglycan primes for LPS-induced release of proinflammatory cytokines in whole human blood. Shock 16: 178-182. https://doi.org/10.1097/00024382-200116030-00002
  32. Medzhitov R. 2001. Toll-like receptors and innate immunity. Nat Rev Immunol 1: 135-145. https://doi.org/10.1038/35100529

피인용 문헌

  1. Sorghum Extract Enhances Caspase-dependent Apoptosis in Primary Prostate Cancer Cells and Immune Activity in Macrophages vol.26, pp.12, 2016, https://doi.org/10.5352/JLS.2016.26.12.1431
  2. 산지별 고초균 발효누에의 이화학적 특성 및 생리활성 vol.27, pp.12, 2017, https://doi.org/10.5352/jls.2017.27.12.1470
  3. 달맞이꽃 종자 추출물의 생리활성 vol.28, pp.9, 2018, https://doi.org/10.5352/jls.2018.28.9.1048
  4. Comparison of biological activity between Stellaria aquatica seed extracts vol.26, pp.2, 2016, https://doi.org/10.11002/kjfp.2019.26.2.228