DOI QR코드

DOI QR Code

Reliability Analysis of Offshore Wind Turbines Considering Soil-Pile Interaction and Scouring Effect

지반과 말뚝의 상호작용 및 세굴현상을 고려한 해상풍력터빈의 신뢰성 해석

  • Yi, Jin-Hak (Coastal Development Research Center, Korea Institute of Ocean Science and Technology) ;
  • Kim, Sun-Bin (Coastal Development Research Center, Korea Institute of Ocean Science and Technology) ;
  • Yoon, Gil-Lim (Coastal Development Research Center, Korea Institute of Ocean Science and Technology)
  • 이진학 (한국해양과학기술원 연안개발연구센터) ;
  • 김선빈 (한국해양과학기술원 연안개발연구센터) ;
  • 윤길림 (한국해양과학기술원 연안개발연구센터)
  • Received : 2016.07.27
  • Accepted : 2016.08.22
  • Published : 2016.08.31

Abstract

Multi-member lattice-type structures including jackets and tripods are being considered as good alternatives to monopile foundations for relatively deep water of 25-50 m of water depth owing to their technical and economic feasibility. In this study, the reliability analysis of bottom-fixed offshore wind turbines with monopile and/or multi-member lattice-type foundations is carried out and the sensitivities of random variables such as material properties, external wind loadings and scouring depth are compared with respect to different types of foundations. Numerical analysis of the NREL 5 MW wind turbine supported by monopile, tripod and jacket substructures shows that the uncertainties of soil properties affect the reliability index more significantly for the monopile-supported OWTs while the reliability index is not so sensitive to the material properties in the cases of tripod- and jacket-supported OWTs. In conclusion, the reliability analysis can be preliminarily carried out without considering soil-pile-interaction in the cases of tripod- and jacket-supported OWTs while it is very important to use the well-measured soil properties for reliable design of monopile-supported OWTs.

최근 해상풍력터빈에 대한 하부구조물로 재킷 또는 트라이포드 형태의 고정식 하부구조물이 기존의 모노파일을 대체하는 좋은 대안으로 제시되고 있다. 이러한 재킷 또는 트라이포트 하부구조물은 이미 기술성숙도가 높고 25-50 m 사이의 중수심에서 경제성 확보가 가능하다. 본 논문에서는 모노파일을 포함하여 트라이포드, 재킷 하부구조물을 채택한 고정식 해상풍력터빈에 대하여 지반물성치 및 하중의 불확실성, 그리고 세굴 깊이를 고려하여 신뢰성 해석을 수행하였다. NREL 5 MW 풍력터빈 제원을 이용한 수치해석을 통하여, 지반물성치의 불확실성을 고려한 신뢰도 지수 분석 결과 모노파일 기초를 채택한 해상풍력터빈의 신뢰도 지수가 세굴깊이가 증가함에 따라 크게 감소하는 것을 알 수 있었으며, 재킷 또는 트라이포드 기초를 채택한 경우 세굴깊이가 신뢰도 지수에 미치는 영향이 크지 않음을 알 수 있었다. 결론적으로 재킷 또는 트라이포드 기초를 채택한 해상풍력터빈의 경우 지반-말뚝 상호작용을 고려하지 않아도 구조 신뢰성 해석을 수행할 수 있으나, 모노파일을 채택한 경우, 신뢰성 해석 시 지반물성치 및 이에 포함되어 있는 불확실성의 정보가 상대적으로 중요함을 알 수 있다.

Keywords

References

  1. API (2005) Recommended practice for planning, design and constructing fixed offshore platforms-working stress design. American Petroleum Institute Publishing Service, Washington D.C., 1-263.
  2. Barber, E.S. (1953) Discussion to Paper by S.M. Gleser, ASTM, STP, 154, 96-99.
  3. Bucher, C.G., and Bourgund, U. (1990) A fast and efficient response surface approach for structural reliability problem. Structural Safety, 7, 57-66. https://doi.org/10.1016/0167-4730(90)90012-E
  4. Davisson, M. T. and Gill, H. L. (1963) laterally loaded piles in layered soil system, Journal of Soil Mechanics Foundation Division, ASCE, 89(3), 63-94.
  5. DNV (2004) Design of offshore wind turbine structures, Offshore Standard DNV-OS-J101.
  6. Evans, L.T. Jr., and Duncan, J.M. (1982) Simplified analysis of laterally loaded piles. Report UCB/GT/82-04, University of California, Berkeley.
  7. EWEA (2013) Deep water - The next step for offshore wind energy. A report by the European Wind Energy Association.
  8. EWEA (2014) The European offshore wind industry - key trends and statistics 2013. A report by the European Wind Energy Association.
  9. Hasofer, A.M. and Lind, L.C (1974) Exact and invariant second moment code format, Journal of the Engineering Mechanics Division, ASCE, Vol. 100, Issue 1, 111-121.
  10. Hetenyi, M. (1946) Beams on elastic foundations, University of Michigan Press, Ann Arbor.
  11. Hyein E&C (2015) Reliability analysis and software development for offshore wind turbine support structures. Final Report to Korea Institute of Energy Technology Evaluation and Planning.
  12. Jonkman, J., Butterfield, S., Musial, W., and Scott, G. (2009). Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060 February 2009.
  13. Khuri, A.I., and Cornell, J.A. (1987) Response surfaces: design and analysis. Dekker, New York.
  14. Ko, D.H., Jeong, S.T., and Oh, N.S. (2015) Numerical simulation test of scour around offshore jacket structure using FLOW-3D. Journal of Korean Society of Coastal and Ocean Engineers, 27(6), 373-381 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.6.373
  15. KOPEC (2013) Test bed for 2.5GW offshore wind farm at Yellow Sea. Interim Design Basis Report.
  16. Lee, S. (2013) Dynamic analysis of offshore wind turbine with different substructure types considering scour effect. MSc Dissertation, POSTECH.
  17. Margheritini, L., Frigaard, P.B., Martinelli, L., and Lamberti, A. (2006) Scour around monopile foundations for offshore wind turbines. Book of Abstracts of the First International Conference on the Application of Physical Modelling to Port and Coastal Protection (CoastLab06), 115-118.
  18. Matlock, H. (1970) Correlation for design of laterally loaded piles in soft clay, Proc., 2nd Ann. Offshore Technol. Conf., OTC, Houston, Texas, 577-594.
  19. Nakagawa, H., and Suzuki, K. (1976) Local scour around bridge pier in tidal currents. Coastal Engineering in Japan, 19, 89-100.
  20. Nicholson, J.C. (2011) Design of wind turbine tower and foundation systems: optimization approach, MSc Dissertaion, University of Iowa.
  21. Peters, H.C.(1986) Europlatform, use of and experience with a monopod structure as a measuring platform in the North Sea, Proceedings of the Monopod Conference, Delft, June 20th 1986.
  22. Rudolph, D., Bos, K.J., Luijendijk, A.P., Rietema, K., and Out, J.M.M. (2004) Scour around offshore structures - analysis of field measurements. Proceedings of the 2nd International Conference on Scour and Erosion, 14-17 November, Singapore, vol. 1, 400-407.
  23. Schueller, G.I., Bucher, C.G., Bourgund, U., and Ouypornpasert, W. (1987) On efficient computational schemes to calculate structural failure probabilities. Stochastic Structural Mechanics, U.S.-Austria Joint Seminar, 338-410.
  24. Van der Tempel, J., Zaaijer, M.B., Subroto, H. (2004) The effects of scour on the design of offshore wind turbines, Proceedings of MAREC 2004.
  25. Winkler, E. (1867) Die Lehre von der Elastisitat und Festigkeit, Dominicus, Prague, Czech Republic.
  26. Yang, Y.-S., Suh, Y.-S., Lee, J.-O. (1999) Structural reliability engineering, Seoul National University.
  27. Yi J.-H., Kim, S.-B., Yoon, G.-L., and Andersen, L.V. (2015) Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth. Wind and Structures, 21(6), 625-639. https://doi.org/10.12989/was.2015.21.6.625
  28. Yoon, G.L., Kim, S.B., Kwon, O.S. and Yoo, M.S. (2014) Partial safety factor of offshore wind turbine pile foundation in West-South Mainland Sea, Journal of the Korean Society of Civil Engineers, 34(5), 1489-1504 (in Korean). https://doi.org/10.12652/Ksce.2014.34.5.1489