DOI QR코드

DOI QR Code

Numerical Experiment of Wave Attenuation considering Behavior of Vegetation Zone

식생대의 거동을 고려한 파랑감쇠의 수치실험

  • Jeong, Yeon Myeong (Department of Ocean Civil Engineering, Gyeongsang National University) ;
  • Hur, Dong Soo (Department of Ocean Civil Engineering, Gyeongsang National University)
  • 정연명 (경상대학교 해양토목공학과) ;
  • 허동수 (경상대학교 해양토목공학과)
  • Received : 2016.08.11
  • Accepted : 2016.08.24
  • Published : 2016.08.31

Abstract

In this study, the two-way coupled analysis method of LES-WASS-2D and DEM has been newly developed to review numerically wave attenuation due to behavior of vegetation zone could not yet applied in numerical analysis. To verify the applicability, two-way coupled analysis method is analyzed comparing to the experimental result about characteristics of wave attenuation using vegetation. Numerically analyzed behavior and characteristics of wave attenuation according to height length, distribution length, spacing of vegetation zone and incident wave conditions. It was confirmed to be effective of 3~4% wave attenuation were increased height length and distribution length, narrowed spacing of vegetation. Finally, this study is applicable to behavior and wave attenuation prediction of vegetation zone.

본 연구에서는 아직까지 수치해석에서 적용할 수 없었던 식생대의 거동에 따른 파랑감쇠를 수치적으로 검토하기 위하여 파동장모델(LES-WASS-2D)과 개별요소법(DEM)의 양방향 연성해석기법을 개발하였다. 본 논문에서 적용하는 양방향 연성해석기법의 타당성 및 유효성을 확보하기 위하여 식생을 이용한 파랑감쇠 특성에 관한 수리모형실험결과와 비교 분석하였다. 식생대의 높이, 분포, 간격 및 입사파랑조건에 따른 거동 및 파랑감쇠특성을 수치적으로 분석하였으며, 식생대의 높이가 길어질수록, 분포가 늘어날수록, 간격이 좁아질수록 3~4%정도 파랑감쇠에 효과적인 것을 확인하였다. 이로써 본 연구에서 개발한 연성 수치모델이 식생대의 거동에 따른 파랑감쇠 예측에 적용 가능한 것을 확인하였다.

Keywords

References

  1. Asano, T., Deguchi, H. and Kobayashi, N. (1992). Interactions between water waves and vegetation. Proc. 23rd Int. Conf. on Coastal Eng., ASCE, 2710-2723.
  2. Augustin, L.N., Irish, J.L. and Lynett. P. (2009). Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coastal Eng., 56, 332-340. https://doi.org/10.1016/j.coastaleng.2008.09.004
  3. Cundall, P.A. and Strack O.D.L. (1979). A discrete numerical model for grnaular assemblies, Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  4. Ergun, S. (1952). Fluid flow through packed columns. Chemical Eng. 48(2), 89-94.
  5. Harada, E., Gotoh, H., Sakai, T. and Couda, K. (2007). Numerical simulation for subsidence process of wave dissipating blocks using 3D-DEM. Proc. of Coastal Eng., JSCE, 54, 921-925. https://doi.org/10.2208/proce1989.54.921
  6. Hur, D.S. and Choi, D.S. (2008). Effect of the slope gradient of a permeable submerged breakwater on wave field around it. Journal of Korean Society of Civil Engineers, KSCE, 28(2B), 249-259(in Korean).
  7. Hur, D.S. and Jeon, H.S. (2011). Development of numerical model for scour analysis under wave loads in front of an impermeable submerged breakwater. Journal of Korean Society of Civil Engineers, KSCE, 31(5B), 483-489(in Korean).
  8. Kobayashi, N., Andrew, W.R. and Asano, T. (1993). Wave attenuation by vegetation J. Waterway, Port, Coastal and Ocean Eng., ASCE, 119, 30-48. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:1(30)
  9. Kim, W.K. (2008). An experimental study for wave energy attenuation by vegetation density, Ph.D. Thesis, Gyeongsang National University.
  10. Lara, J.L., Maza, M., Ondiviela, B., Trinogga, J., Losada, I.J., Bouma, T.J. and Gordejuela, N. (2016). Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 1: Guidelines for physical modeling. Coastal Eng., 107, 70-83. https://doi.org/10.1016/j.coastaleng.2015.09.012
  11. Lee, S.D. (2006). Numerical analysis for wave propagation with vegetated coastal area. J. Ocean Eng. and tech., 20, 63-68(in Korean).
  12. Lee, S.D. (2007). Numerical analysis for wave propagation and sediment transport with coastal vegetation. J. Ocean Eng. and tech., 21, 18-24(in Korean).
  13. Lee, S.D. (2008). Wave attenuation due to waver-front vegetation. J. Navi. and Port Res. 21, 18-24(in Korean).
  14. Lee, S.D., Park, J.C. and Hong, C.B. (2009). Hydraulic experiment on the effetcs of beach erosion prevention with flexible coastal vegetation. J. Ocean Eng. and tech., 23, 31-37(in Korean).
  15. Lee, S.D., Kim, S.D. and Kim, I.H. (2012). Reduction effect for deposition in navigation channel with vegetation model. J. Navi. and Port Res., 36, 659-664 (in Korean). https://doi.org/10.5394/KINPR.2012.36.8.659
  16. Liu, S. and Masliyah, J. H. (1999). Non-linear flows porous media. J. Non-Newtonian Fluid Mech., 86, 229-252. https://doi.org/10.1016/S0377-0257(98)00210-9
  17. Maza, M., Lara, J.L. and Losada, I.J. (2015). Tsunami wave interaction with mangrove forests: A 3-D numerical approach. Coastal Eng., 98, 33-54. https://doi.org/10.1016/j.coastaleng.2015.01.002
  18. Sakakiyama, T. and Kajima, R. (1992). Numerical simulation of nonlinear wave interacting with permeable breakwater. Proc. 23rd Int. Conf. on Coastal Eng., ASCE, Venice, 1517-1530.
  19. Tang, J., Shen, S. and Wang, H. (2015). Numerical model for coastal wave propagation through mild slope zone in the presence of rigid vegetation, Coastal Eng., 97, 53-59. https://doi.org/10.1016/j.coastaleng.2014.12.006
  20. van Gent, M.R.A. (1995). Wave interaction with permeable coastal structures, Ph.D. Thesis, Delft University The Netherlands.
  21. Wu, W. C., and Cox, D. T. (2015). Effects of wave steepness and relative water depth on wave attenuation by emergent vegetation. Estuarine Coastal Shelf Sci., 164, 443-450. https://doi.org/10.1016/j.ecss.2015.08.009