DOI QR코드

DOI QR Code

Assessment of Lifeline Construction Technology for Buried Alive in Building Collapse

도심지 붕괴사고에 따른 매몰지역 생명선 시공기술 평가

  • Ryu, Byung-Hyun (Geotechnical Engineering Research Division, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Kang, Jae-Mo (Geotechnical Engineering Research Division, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Lee, Jangguen (Geotechnical Engineering Research Division, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Kim, Young-Sam (Soiltech Engineering Co., Ltd.) ;
  • Joo, Rak-Bong (Soiltech Engineering Co., Ltd.)
  • Received : 2016.07.08
  • Accepted : 2016.08.18
  • Published : 2016.09.01

Abstract

Unusual extreme weather events, which exceed a safe design capacity of the infrastructure, increase the frequency of natural disasters and has also been enlarged damage scale. Aging buildings and rapid urban progress act as weighting factors for the new composite disasters. Technological advances support detecting pre-disaster risk, real-time data analysis, and rapid response to the disaster site, but it is insufficient that emergency relief for buried alive must take advantage of the proven technologies through field tests. This study aims to evaluate directional drilling performance through underground soils and the reinforced concrete structure for primary lifeline installation in order to quickly provide relief supplies for buried alive when urban structures collapse.

최근 사회기반시설의 안전설계 용량을 초과하는 잦은 위험기상 등으로 자연재난의 빈도가 증가하고 피해규모도 대형화되고 있으며, 도시화 진전에 따른 시설의 고층화 노후건축물 증가와 세계화에 따른 유동인구 및 물류 증가 등이 신종 복합 재난을 가중시키는 요인으로 작용하고 있다. 첨단 과학기술을 활용하여 재난위험 사전 감지, 실시간 정보분석, 재난현장에 대한 신속한 대응이 가능하지만, 매몰자 긴급구호에 필요한 시공에서는 반드시 검증된 기술을 활용해야 함에도 불구하고 현장 시험시공을 통한 검증은 미흡하다. 본 연구에서는 도심지 시설물 붕괴 재난 사고 발생 시 매몰지점에 고립된 피구호자를 대상으로 골든타임인 72시간 이내에 식수 및 구호품을 신속하게 공급하기 위한 1차 생명선 설치와 철근 콘크리트 구조체 굴착 성능을 평가하는 데 목적이 있다.

Keywords

References

  1. Chung, J., Lee, S., Lee, K., Jung, H. and Kim, H. (2015), A case study on the effects on underground structure due to changes in the groundwater level and ground stress, Journal of Korean Geo-Environmental Society, Vol. 16, No. 9, pp. 13-21 (in Korean). https://doi.org/10.14481/jkges.2015.16.9.13
  2. Jung, J., Park, H., Kim, K. Y. and Shin, H. S. (2015), Numerical simulation for prediction of existing cavity location on earthquakeinduced building collapse, Journal of Engineering Geology, Vol. 25, No. 4, pp. 613-621 (in Korean). https://doi.org/10.9720/kseg.2015.4.613
  3. Kang, S. P., Kim, G. Y., Kwon, Y. J., Jung, S. C., Lee, D. C., Song, B. C. and Kim, M. H. (1998), A study on the analysis and evaluation of deterioration factors for the structure of reinforced concrete apartment according to actual condition survey, Proceedings of the Korea Concrete Institute, Vol. 10, No. 1, pp. 391-396 (in Korean).
  4. Li, N., Bercerik-Gerber, B., Soibelman, L. and Krishnamachari, B. (2015), Comparative assessment of an indoor localization framework for building emergency response, Automation in Construction, Vol. 57, pp. 42-54. https://doi.org/10.1016/j.autcon.2015.04.004
  5. Moon, H. S., Lee, W. S., Lee, G. W. and Han, D. S. (2015), A 2-D location determination model of buried persons in collapsed shape using optimal wireless communication technology, Journal of the Korea Academia-Industrial Cooperation Society, Vol. 16, No. 12, pp. 8879-8888 (in Korean). https://doi.org/10.5762/KAIS.2015.16.12.8879
  6. Moseley, S. G., Bohn, K. P. and Goedickemeier, M. (2009), Core drilling in reinforced concrete using polycrystalline diamond (PCD) cutters: Wear and fracture mechanisms, International Journal of Refractory Metals & Hard Materials, Vol. 27, Issue 2, pp. 394-402. https://doi.org/10.1016/j.ijrmhm.2008.11.014
  7. Son, B. S. (1997), The sampoong department collapse-actuality of rescue, Review of Architecture and Building Science, Vol. 41, No. 6, pp. 20-23 (in Korean).