DOI QR코드

DOI QR Code

Strain Gradient Crystal Plasticity Finite Element Modeling for the Compression Behaviors of Single Crystals

단결정 압축 변형 거동의 변형구배 결정소성 유한요소해석

  • Jung, Jae-Ho (HYUNJIN Materials Co.) ;
  • Cho, Kyung-Mox (School of Materials Science and Engineering, Pusan National University) ;
  • Choi, Yoon Suk (School of Materials Science and Engineering, Pusan National University)
  • 정재호 (현진소재(주)) ;
  • 조경목 (부산대학교 공과대학 재료공학부) ;
  • 최윤석 (부산대학교 공과대학 재료공학부)
  • Received : 2017.09.11
  • Accepted : 2017.11.06
  • Published : 2017.12.27

Abstract

A strain-gradient crystal plasticity finite element method(SGCP-FEM) was utilized to simulate the compressive deformation behaviors of single-slip, (111)[$10{\bar{1}}$], oriented FCC single-crystal micro-pillars with two different slip-plane inclination angles, $36.3^{\circ}$ and $48.7^{\circ}$, and the simulation results were compared with those from conventional crystal plasticity finite element method(CP-FEM) simulations. For the low slip-plane inclination angle, a macroscopic diagonal shear band formed along the primary slip direction in both the CP- and SGCP-FEM simulations. However, this shear deformation was limited in the SGCP-FEM, mainly due to the increased slip resistance caused by local strain gradients, which also resulted in strain hardening in the simulated flow curves. The development of a secondly active slip system was altered in the SGCP-FEM, compared to the CP-FEM, for the low slip-plane inclination angle. The shear deformation controlled by the SGCP-FEM reduced the overall crystal rotation of the micro-pillar and limited the evolution of the primary slip system, even at 10 % compression.

Keywords

References

  1. H. Zhang, B. E. Schuster, Q. Wei and K. T. Ramesh, Scripta Mater., 54, 181 (2006). https://doi.org/10.1016/j.scriptamat.2005.06.043
  2. Z. Zhao, M. Ramesh, D. Raabe, A. M. Cuitino and R. Radovitzky, Int. J. Plasticity, 24, 2278 (2008). https://doi.org/10.1016/j.ijplas.2008.01.002
  3. Y. S. Choi, T. A. Parthasarathy, D. M. Dimiduk and M. D. Uchic, Mater. Sci. Eng. A, 397, 69 (2005). https://doi.org/10.1016/j.msea.2005.01.057
  4. Y. S. Choi, M. D. Uchic, T. A. Parthasarathy and D. M. Dimiduk, Scripta Mater., 57, 849 (2007). https://doi.org/10.1016/j.scriptamat.2007.06.057
  5. R. Maass, S. Van Petegem, D. Ma, J. Zimmermann, D. Grolimund, F. Roters, H. Van Swygenhoven and D. Raabe, Acta Mater., 57, 5996 (2009). https://doi.org/10.1016/j.actamat.2009.08.024
  6. D. Raabe, D. Ma and F. Roters, Acta Mater., 55, 4567 (2007) https://doi.org/10.1016/j.actamat.2007.04.023
  7. A. Musienko, A. Tatschl, K. Schmidegg, O. Kolednik, R. Pippan and G. Cailetaud, Acta Mater., 55, 4121 (2007). https://doi.org/10.1016/j.actamat.2007.01.053
  8. E. Heripre, M. Dexet, J. Crepin, L. Gelebart, A. Roos, M. Bornert and D. Caldemaison, Int. J. Plasticity, 23, 1512 (2007). https://doi.org/10.1016/j.ijplas.2007.01.009
  9. S. R. Kalidindi, A. Bhattacharyya and R. D. Doherty, Proc. R. Soc. Lond. A, 460, 1935 (2004). https://doi.org/10.1098/rspa.2003.1260
  10. Y. Yang, L. Wang, T. R. Bieler, P. Eisenlohr and M. A. Crimp, Metall. Mater. Trans. A, 42, 636 (2011). https://doi.org/10.1007/s11661-010-0475-0
  11. C. Rehrl, B. Volker, S. Kleber, T. Antretter and R. Pippan, Acta Mater., 60, 2379 (2012). https://doi.org/10.1016/j.actamat.2011.12.052
  12. D. Raabe, M. Sachtleber, Z. Zhao, F. Roters and S. Zaefferer, Acta Mater., 49, 3433 (2001). https://doi.org/10.1016/S1359-6454(01)00242-7
  13. A. C. Lewis, M. A. Siddiq Qidwai and A. B. Geltmacher, Metall. Mater. Trans. A, 41, 2522 (2010). https://doi.org/10.1007/s11661-010-0284-5
  14. D. Pyle, J. Lu, D. Littlewood and A. Maniatty, Comp. Mechanics, 52, 135 (2012).
  15. A. Zeghadi, S. Forest, A.-F. Gourgues and O. Bouaziz, Phil. Mag., 87, 1425 (2007). https://doi.org/10.1080/14786430601009517
  16. H. Lim, M. G. Lee, J. K. Kim, B. L. Adams and R. H. Wagoner, Int. J. Plasticity, 27, 1328 (2011). https://doi.org/10.1016/j.ijplas.2011.03.001
  17. O. Diard, S. Leclercq, G. Rousselier and G. Cailletaud, Int. J. Plasticity, 21, 691 (2005). https://doi.org/10.1016/j.ijplas.2004.05.017
  18. F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler and D. Raabe, Acta Mater., 58, 1152 (2011).
  19. W. Ludwig, A. King, P. Reischig, M. Herbiga, E. M. Lauridsend, S. Schmidt, H. Proudhon, S. Forest, P. Cloetens, S. Rolland du Roscoat, J. Y. Buffiere, T. J. Marrow and H. F. Poulsen, Mat. Sci. Eng A, 524, 69 (2009). https://doi.org/10.1016/j.msea.2009.04.009
  20. D. Chandrasekaran and M. Nygards, Mat. Sci. Eng. A, 365, 191 (2004). https://doi.org/10.1016/j.msea.2003.09.027
  21. T. R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D. E. Mason, M. A. Crimp and D. Raabe, Int. J. Plasticity, 25, 1655 (2009). https://doi.org/10.1016/j.ijplas.2008.09.002
  22. O. Diard, S. Leclercq, G. Rousselier and G. Cailletaud, Comp. Mat. Sci., 25, 73 (2002). https://doi.org/10.1016/S0927-0256(02)00251-3
  23. M. A. Siddiq Qidwai, A. C. Lewis and A. B. Geltmacher, Acta Mater., 57, 4233 (2009). https://doi.org/10.1016/j.actamat.2009.05.021
  24. F. Barbe, L. Decker, D. Jeulin and G. Cailletaud, Int. J. Plasticity, 17, 513 (2001). https://doi.org/10.1016/S0749-6419(00)00061-9
  25. E. Marin and P. R. Dawson, Appl. Mech. and Eng., 165, 1 (1998). https://doi.org/10.1016/S0045-7825(98)00034-6
  26. J. Harder: Int. J. Plasticity, 15, 605 (1999). https://doi.org/10.1016/S0749-6419(99)00002-9
  27. R. Becker and O. Richmond, Modelling Simul. Mat. Sci. Eng., 2, 439 (1994). https://doi.org/10.1088/0965-0393/2/3A/002
  28. J. F. Nye, Acta Metall., 1, 153 (1953). https://doi.org/10.1016/0001-6160(53)90054-6
  29. A. Acharya and J. L. Bassani, J. Mech. Phys. Solids, 48, 1565 (2000). https://doi.org/10.1016/S0022-5096(99)00075-7
  30. A. Acharya and A. J. Beaudoin, J. Mech. Phys. Solids, 48, 2213 (2000). https://doi.org/10.1016/S0022-5096(00)00013-2
  31. A. J. Beaudoin, A. Acharya, S. R. Chen, D. A. Korzekwa and M. G. Stout, Acta Mater., 48, 3409 (2000). https://doi.org/10.1016/S1359-6454(00)00136-1
  32. A. J. Beaudoin and A. Acharya, Mat. Sci. Eng. A, 309- 310, 411 (2001).
  33. Y. Wang, J. W. Kysar, S. Vukelic and Y. L. Yao, J. Manuf. Sci. & Eng., 131, 041014-1 (2009). https://doi.org/10.1115/1.3160370
  34. C. J. Bayley, W. A. Brekelmans and M. G. D. Geers, Phil. Mag., 87, 1361 (2007). https://doi.org/10.1080/14786430600965107
  35. A. G. Evans and J. W. Hutchinson, Acta Mater., 57, 1675 (2007).
  36. H. Wang, K. C. Hwang, Y. Huang, P. D. Wu, B. Liu, G. Ravichandran, C.-S. Han, H. Gao, Int. J. Plasticity, 23, 1540 (2007). https://doi.org/10.1016/j.ijplas.2007.01.004
  37. J. M. Gerken and P. R. Dawson, J. Mech. Phys. Solids, 56, 1651 (2008). https://doi.org/10.1016/j.jmps.2007.07.012
  38. A. Ma, F. Roters and D. Raabe, Acta Mater., 54, 2169 (2006). https://doi.org/10.1016/j.actamat.2006.01.005
  39. U. Borg, Euro. J. Mech. A/Sol., 26, 313 (2006).
  40. M. Kuroda and V. Tvergaard, J. Mech. Phys. Solids, 54, 1789 (2006). https://doi.org/10.1016/j.jmps.2006.04.002
  41. A. Arsenlis, D. M. Parks, R. Becker and V. V. Bulatov, J. Mech. Phys. Solids, 52, 1213 (2004). https://doi.org/10.1016/j.jmps.2003.12.007
  42. F. T. Meissonnier, E. P. Busso and N. P. O'Dowd, Int. J. Plasticity, 17, 601 (2001). https://doi.org/10.1016/S0749-6419(00)00064-4
  43. K. S. Cheong, E. P. Busso and A. Arsenlis, Int. J. Plasticity, 21, 1797 (2005). https://doi.org/10.1016/j.ijplas.2004.11.001
  44. Y. Aoyagi and K. Shizawa, Int. J. Plasticity, 23, 1022 (2007). https://doi.org/10.1016/j.ijplas.2006.10.009
  45. Y. S. Choi, K.-M. Cho, D.-G. Nam and I.-D. Choi, Korean J. Mater. Res., 25, 81 (2015). https://doi.org/10.3740/MRSK.2015.25.2.81
  46. J.-H. Jung, Y.-S. Na, K.-M. Cho, D. M. Dimiduk and Y. S. Choi, Metall. Mater. Trans. A, 46, 4834 (2015). https://doi.org/10.1007/s11661-015-3092-0
  47. Y. Zhou, K. W. Neale and L. S. Toth, Int. J. Plasticity, 9, 961 (1993). https://doi.org/10.1016/0749-6419(93)90061-T
  48. P. Franciosi and A. Zaoui, Acta Metall., 30, 1627 (1982). https://doi.org/10.1016/0001-6160(82)90184-5
  49. P. Franciosi and A. Zaoui, Acta Metall., 30, 2141 (1982). https://doi.org/10.1016/0001-6160(82)90135-3
  50. P. Franciosi, M. Berveiller and A. Zaoui, Acta Metall., 28, 273 (1980). https://doi.org/10.1016/0001-6160(80)90162-5
  51. H. Mecking and U. F. Kocks, Acta Mater., 29, 173 (1981).
  52. P. Shanthraj, M. A. Zikry, Acta Mater., 59, 7695 (2011). https://doi.org/10.1016/j.actamat.2011.08.041
  53. P. M. Anderson and J. R. Rice, Acta Metall., 33, 409 (1985). https://doi.org/10.1016/0001-6160(85)90083-5
  54. D. Peirce, C. F. Shih and A. Needleman, Computers & Structures, 18, 875 (1984). https://doi.org/10.1016/0045-7949(84)90033-6
  55. D. Peirce, R. J. Asaro and A. Needleman, Acta Metall., 31, 1951 (1983). https://doi.org/10.1016/0001-6160(83)90014-7