DOI QR코드

DOI QR Code

Material Nonlinear Behavior and Microstructural Transition of Porous Polyurethane Foam under Uniaxial Compressive Loads

일축 압축하중 하 다공성 폴리우레탄폼의 재료비선형 거동 및 미세구조 변화

  • Lee, Eun Sun (Biomedical Research Institute, Pusan National University Hospital) ;
  • Goh, Tae Sik (Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital) ;
  • Lee, Chi-Seung (Biomedical Research Institute, Pusan National University Hospital)
  • 이은선 (부산대학교병원 의생명연구원) ;
  • 고태식 (부산대학교병원 정형외과) ;
  • 이치승 (부산대학교병원 의생명연구원)
  • Received : 2017.08.03
  • Accepted : 2017.11.06
  • Published : 2017.12.27

Abstract

Porous materials such as polymeric foam are widely adopted in engineering and biomedical fields. Porous materials often exhibit complex nonlinear behaviors and are sensitive to material and environmental factors including cell size and shape, amount of porosity, and temperature, which are influenced by the type of base materials, reinforcements, method of fabrication, etc. Hence, the material characteristics of porous materials such as compressive stress-strain behavior and void volume fraction according to aforementioned factors should be precisely identified. In this study, unconfined uniaxial compressive test for two types of closed-cell structure polyurethane foam, namely, 0.16 and $0.32g/cm^3$ of densities were carried out. In addition, the void volume fraction of three different domains, namely, center, surface and buckling regions under various compressive strains (10 %, 30 %, 50 % and 70 %) were quantitatively observed using Micro 3D Computed Tomography(micro-CT) scanning system. Based on the experimental results, the relationship between compressive strain and void volume fraction with respect to cell size, density and boundary condition were investigated.

Keywords

References

  1. M. Bram, C. Stiller, H. P. Buchkremer, D. Stover and H. Baur, Adv. Eng. Mater., 2, 196 (2000). https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<196::AID-ADEM196>3.0.CO;2-K
  2. G. Davies and S. Zhen, J. Mater. Sci., 18, 1899 (1983). https://doi.org/10.1007/BF00554981
  3. E. Ryshkewitch, J. Am. Ceram. Soc., 36, 65 (1953). https://doi.org/10.1111/j.1151-2916.1953.tb12837.x
  4. M. Scheffler and P. Colombo, Cellular ceramics: structure, manufacturing, properties and applications, John Wiley & Sons, p. 33, M. S. a. P. Colombo, John Wiley & Sons, (2006).
  5. N. R. Cameron, Polymer, 46, 1439 (2005). https://doi.org/10.1016/j.polymer.2004.11.097
  6. J. Lotters, W. Olthuis, P. Veltink and P. Bergveld, J. Micromech. Microeng., 7, 145 (1997). https://doi.org/10.1088/0960-1317/7/3/017
  7. J. A. Szivek, J. D. Thompson and J. B. Benjamin, J. Appl. Biomater. Biomech., 6, 125 (1995). https://doi.org/10.1002/jab.770060207
  8. S. Goods, C. Neuschwanger, C. Henderson and D. Skala, J. Appl. Polymer. Sci., 68, 1045 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980516)68:7<1045::AID-APP2>3.0.CO;2-F
  9. R. Allen, N. Baldini, P. Donofrio, E. Gutman, E. Keefe and J. Kramer, Annual book of ASTM standards, medical devices and services. West Conshohocken, The American Society for Testing and Materials, (1998).
  10. J. R. Chapman, R. Harrington, K. Lee, P. Anderson, A. F. Tencer and D. Kowalski, J. Biomech. Eng., 118, 391 (1996). https://doi.org/10.1115/1.2796022
  11. M. Ashby, Phil. Trans. Roy. Soc. Lond. Math. Phys. Sci., 364, 15 (2006). https://doi.org/10.1098/rsta.2005.1678
  12. S. Meille, M. Lombardi, J. Chevalier and L. Montanaro, J. Eur. Ceram. Soc., 32, 3959 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.05.006
  13. B. Johansson and G. Alderborn, Eur. J. Pharm. Biopharm., 52, 347 (2001). https://doi.org/10.1016/S0939-6411(01)00186-2
  14. O. Umezawa, Metal, Ceramic and Polymeric Composites for Various Uses, from https://www.intechopen.com/books/metal-ceramic-and-polymeric-composites-forvarious-uses/thermo-mechanical-treatment-of-glassballoon-dispersed-metal-matrix-composite
  15. Q. Hou, D. W. Grijpma and J. Feijen, Biomaterials, 24, 1937 (2003). https://doi.org/10.1016/S0142-9612(02)00562-8
  16. D. Poulikakos, J. Fluid. Eng., 124, 263 (2002). https://doi.org/10.1115/1.1429637
  17. A. Markaki and T. Clyne, Acta Mater., 49, 1677 (2001). https://doi.org/10.1016/S1359-6454(01)00072-6
  18. S. Callcut and J. Knowles, J. Mater. Sci. Mater. Med., 13, 485 (2002).
  19. J. Rice, S. Cowin and J. Bowman, J. Biomech., 21, 155 (1988). https://doi.org/10.1016/0021-9290(88)90008-5
  20. H. Kolsky, Proc. Phys. Soc. B, 62, 676 (1949). https://doi.org/10.1088/0370-1301/62/11/302
  21. N. Sarier and E. Onder, Thermochim. Acta, 510, 113 (2010). https://doi.org/10.1016/j.tca.2010.07.004
  22. Sawbones Worldwide, from http://www.sawbones.com/products/bio/composite.aspx.
  23. D. ASTM, American Society for Testing and Materials, New York, (2016).
  24. S. Goods, C. Neuschwanger and L. Whinnery, MRS Online Proceedings Library Archive, 521 (1998).
  25. F. Yi, Z. Zhu, F. Zu, S. Hu and P. Yi, Mater. Char., 47, 417 (2001). https://doi.org/10.1016/S1044-5803(02)00194-8
  26. W. Hayes and D. Carter, J. Biomed. Mater. Res., 10, 537 (1976). https://doi.org/10.1002/jbm.820100409
  27. G. Subhash, Q. Liu and X.-L. Gao, Int. J. Impact. Eng., 32, 1113 (2006). https://doi.org/10.1016/j.ijimpeng.2004.11.006
  28. L. J. Gibson, M. F. Ashby and B. A. Harley, Cellular Materials in Nature and Medicine, Cambridge University Press, p. 44, Cambridge University Press, (2010).
  29. M. Shaw and T. Sata, Int. J. Mech. Sci., 8, 469 (1966). https://doi.org/10.1016/0020-7403(66)90019-1