DOI QR코드

DOI QR Code

Effect of GAC Packing Mass in Hybrid Water Treatment Process of PVdF Nanofibers Spiral Wound Microfiltration and Granular Activated Carbon

PVdF 나노섬유 나권형 정밀여과와 입상 활성탄의 혼성 수처리에서 활성탄 충진량의 영향

  • Kyung, Kyu Myung (Dept. of Environmental Sciences & Biotechnology, Hallym University) ;
  • Park, Jin Yong (Dept. of Environmental Sciences & Biotechnology, Hallym University)
  • 경규명 (한림대학교 환경생명공학과) ;
  • 박진용 (한림대학교 환경생명공학과)
  • Received : 2017.02.16
  • Accepted : 2017.02.24
  • Published : 2017.02.28

Abstract

Flat membrane with $0.4{\mu}m$ pore size was prepared with PVdF (polyvinylidene fluoride) nanofiber, which has the advantages such as excellent strength, chemical resistance, non-toxicity, and incombustibility. The spiral wound module was manufactured with the flat membrane and a woven paper. Hybrid water treatment process was composed of the PVdF nanofibers spiral wound microfiltration and granular activated carbon (GAC) adsorption column. Effect of GAC packing mass was investigated by comparing the case of recycling or discharging the treated water using the synthetic solution of kaolin and humic acid. After each filtration experiment, water back-washing was performed, and recovery rate and filtration resistances were calculated. Also, effect of GAC adsorption was compared by measuring turbidity and $UV_{254}$ absorbance. As a result, there was no effect of GAC packing mass on turbidity treatment rate; however, the treatment rate of $UV_{254}$ absorbance was 0.7~3.6% for recycling the treated water, and increased to 3.2-5.7% for discharging the treated water. In the case of recycling the treated water, reversible filtration resistance ($R_r$) and irreversible filtration resistance ($R_{ir}$) trended to decrease as increasing GAC packing mass; however, total fitration resistance ($R_t$) was almost constant, and recovery rate of water back-washing trended to increase a little.

고강도, 내약품성, 무독성, 내연소성의 장점을 가지고 있는 PVdF (polyvinylidene fluoride) 나노섬유로 기공이 $0.4{\mu}m$ 평막을 제조한 후, 부직포와 평막으로 나권형 모듈을 제작하였다. 용존유기물의 흡착 제거를 위한 입상 활성탄(GAC, granular activated carbon) 흡착 컬럼과 자체 제작한 나권형 모듈로 혼성 수처리 공정을 구성하였다. 카올린과 휴믹산으로 조제한 모사 용액을 대상으로, 처리수를 재순환하는 경우와 배출하는 경우 각각 GAC 충진량의 영향을 알아보았다. 여과실험 후 물 역세를 하여 회복률과 여과저항을 계산하였다. 또한, 탁도와 $UV_{254}$ 흡광도를 측정하여 GAC의 흡착 효과를 고찰하였다. 그 결과, 처리수를 재순환하는 경우와 배출하는 경우 모두 탁도 처리율에는 GAC 충진량의 영향이 없었다, 하지만 GAC의 $UV_{254}$ 흡광도 처리율이 처리수를 순환하는 경우 0.7~3.6%이었는데, 처리수를 배출하는 경우 3.2-5.7%로 증가하였다. 처리수를 순환하는 경우 GAC의 충진량이 증가함에 따라, 가역적 여과저항($R_r$)과 비가역적 여과저항($R_{ir}$)은 감소하는 경향을 보였다. 그러나 총여과저항($R_t$)은 거의 일정하였고, 물 역세 회복률($R_b$)은 다소 증가하는 경향을 보였다.

Keywords

References

  1. G. M. Geise et al., "Water permeability and water/salt selectivity tradeoff in polymers for desalination", J. Membr. Sci., 369, 130 (2011). https://doi.org/10.1016/j.memsci.2010.11.054
  2. W. Jang, J. Yun, and H. Byun, "Preparation of PAN nanofiber composite membrane with $Fe_3O_4$ functionalized graphene oxide and its application as a water treatment membrane", Membr. J., 24, 151 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.151
  3. K. M. Kyung and J. Y. Park, "Effect of pH in hybrid water treatment process of PVdF nanofibers spiral wound microfiltration and granular activated carbon", Membr. J., 25, 358 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.358
  4. H. Strathmann, "Membrane separation process", J. Membr. Sci., 9, 121 (1981). https://doi.org/10.1016/S0376-7388(00)85121-2
  5. S. T. Hong and J. Y. Park, "Hybrid water treatment of tubular ceramic MF and photocatalyst loaded polyethersulfone beads: Effect of organic matters, adsorption and photo-oxidation at nitrogen back-flushing", Membr. J., 23, 61 (2013).
  6. K. M. Kyung and J. Y. Park, "Effect of operation conditions and recovery of water back-washing in spiral wound microfiltration module manufactured with PVDF nanofibers for water treatment", Membr. J., 25, 180 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.180
  7. H. Ahn, W. Jang, T. Tak, and H. Byun, "Preparation of porous polyacrylonitrile nanofibers membrane for the MF application", Membr. J., 23, 112 (2013).
  8. B. Smithha, S. Sridhar, and A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications a review", J. Membr. Sci., 259, 10 (2005). https://doi.org/10.1016/j.memsci.2005.01.035
  9. J. H. Min, M. S. Park, and J. Kim, "Preparation of hydrophobic porous PVDF membrane and application for membrane distillation", Membr. J., 24, 240 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.3.240
  10. H. Jang, I. C, Kim, and Y. Lee, "Membrane permeation characteristics and fouling control through the coating of poly(vinyl alcohol) on PVdF membrane surface", Membr. J., 24, 276 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.276
  11. I. S. Chronakis, "Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-a review", J. Mater. Process Technol., 167, 283 (2005). https://doi.org/10.1016/j.jmatprotec.2005.06.053
  12. N. Daels, S. D. Vrieze, I. Sampers, B. Decostere, P. Westbroek, A. Dumoulin, P. Dejans, K. D. Clerck, and S. W. H. Van Hulle, "Potential of a functionalised nanofibre microfiltration membrane as an antibacterial water filter", Desalination, 275, 285 (2011). https://doi.org/10.1016/j.desal.2011.03.012
  13. H. D. Lee, Y. H. Cho, and H. B. Park, "Current research trends in water treatment membranes based on nano materials and nano technologies", Membr. J., 23, 101 (2013).
  14. W. A. M. Hijnen, C. Castillo, A. H. Brouwer-Hanzens, D. J. H. Harmsen, E. R. Cornelissen, and D. Van der Kooij, "Quantitative assessment of the efficacy of spiral-wound membrane cleaning procedures to remove biofilms", Water Res., 46, 6369 (2012). https://doi.org/10.1016/j.watres.2012.09.013
  15. H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of multi-channels ceramic microfiltration and activated carbon adsorption", Membr. J., 18, 325 (2008).
  16. K. M. Kyung and J. Y. Park, "Effect of operating conditions and recovery of water back-washing in spiral wound microfiltration module manufactured with PVDF nanofibers for water treatment", Membr. J., 25, 180 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.180
  17. K. M. Kyung and J. Y. Park, "Effect of pH in hybrid water treatment process of PVdF nanofibers spiral wound microfiltration and granular activated carbon", Membr. J., 25, 358 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.358
  18. J. D. Kim, K. W. Park, and C. H. Park, "Application of water treatment with membrane in Seomjin river", Membr. J., 23, 12 (2013).
  19. H. N. Jan, "Advanced water treatment of river water by coagulation-membrane filtration process", Ph.D. Dissertation, Univ. of Kyunghee, Seoul, Korea (2009).
  20. K. E. Yun, "Removal of natural organic matter in han river water by GAC and $O_3$/GAC", Ph.D. Dissertation, Univ. of Seoul, Seoul, Korea (2008).
  21. K. Li, H. Liang, F. Qu, S. Shao, H. Yu, Z. Han, X. Du, and G. Li, "Control of natural organic matter fouling of ultrafiltration membrane by adsorption pretreatment: Comparison of mesoporous adsorbent resin and powdered activated carbon", J. Membr. Sci., 471, 94 (2014). https://doi.org/10.1016/j.memsci.2014.08.006
  22. H. Song, J. Shao, Y. He, B. Liu, and X. Zhong, "Natural organic matter removal and flux decline with PEG-$TiO_2$-doped PVDF membranes by integration of ultrafiltration with photocatalysis", J. Membr. Sci., 405, 48 (2012).