DOI QR코드

DOI QR Code

AN ERDŐS-KO-RADO THEOREM FOR MINIMAL COVERS

  • Ku, Cheng Yeaw (Department of Mathematics National University of Singapore) ;
  • Wong, Kok Bin (Institute of Mathematical Sciences University of Malaya)
  • Received : 2016.04.18
  • Published : 2017.05.31

Abstract

Let $[n]=\{1,2,{\ldots},n\}$. A set ${\mathbf{A}}=\{A_1,A_2,{\ldots},A_l\}$ is a minimal cover of [n] if ${\cup}_{1{\leq}i{\leq}l}A_i=[n]$ and $$\bigcup_{{1{\leq}i{\leq}l,}\\{i{\neq}j_0}}A_i{\neq}[n]\text{ for all }j_0{\in}[l]$$. Let ${\mathcal{C}}(n)$ denote the collection of all minimal covers of [n], and write $C_n={\mid}{\mathcal{C}}(n){\mid}$. Let ${\mathbf{A}}{\in}{\mathcal{C}}(n)$. An element $u{\in}[n]$ is critical in ${\mathbf{A}}$ if it appears exactly once in ${\mathbf{A}}$. Two minimal covers ${\mathbf{A}},{\mathbf{B}}{\in}{\mathcal{C}}(n)$ are said to be restricted t-intersecting if they share at least t sets each containing an element which is critical in both ${\mathbf{A}}$ and ${\mathbf{B}}$. A family ${\mathcal{A}}{\subseteq}{\mathcal{C}}(n)$ is said to be restricted t-intersecting if every pair of distinct elements in ${\mathcal{A}}$ are restricted t-intersecting. In this paper, we prove that there exists a constant $n_0=n_0(t)$ depending on t, such that for all $n{\geq}n_0$, if ${\mathcal{A}}{\subseteq}{\mathcal{C}}(n)$ is restricted t-intersecting, then ${\mid}{\mathcal{A}}{\mid}{\leq}{\mathcal{C}}_{n-t}$. Moreover, the bound is attained if and only if ${\mathcal{A}}$ is isomorphic to the family ${\mathcal{D}}_0(t)$ consisting of all minimal covers which contain the singleton parts $\{1\},{\ldots},\{t\}$. A similar result also holds for restricted r-cross intersecting families of minimal covers.

Keywords

References

  1. R. Ahlswede and L. H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997), no. 2, 125-136. https://doi.org/10.1006/eujc.1995.0092
  2. R. Ahlswede and L. H. Khachatrian, The diametric theorem in Hamming spaces - Optimal anticodes, Adv. in Appl. Math. 20 (1998), no. 4, 429-449. https://doi.org/10.1006/aama.1998.0588
  3. C. Bey, On cross-intersecting families of sets, Graphs Combin. 21 (2005), no. 2, 161-168. https://doi.org/10.1007/s00373-004-0598-4
  4. P. Borg, The maximum sum and the maximum product of sizes of cross-intersecting families, European J. Combin. 35 (2014), 117-130. https://doi.org/10.1016/j.ejc.2013.06.029
  5. F. Brunk and S. Huczynska, Some Erdos-Ko-Rado theorems for injections, European J. Combin. 31 (2010), no. 3, 839-860. https://doi.org/10.1016/j.ejc.2009.07.013
  6. P. J. Cameron and C. Y. Ku, Intersecting families of permutations, European J. Combin. 24 (2003), no. 7, 881-890. https://doi.org/10.1016/S0195-6698(03)00078-7
  7. A. Chowdhury and B. Patkos, Shadows and intersections in vector spaces, J. Combin. Theory Ser. A 117 (2010), no. 8, 1095-1106. https://doi.org/10.1016/j.jcta.2009.10.010
  8. D. Ellis, Stability for t-intersecting families of permutations, J. Combin. Theory Ser. A 118 (2011), no. 1, 208-227. https://doi.org/10.1016/j.jcta.2010.04.005
  9. D. Ellis, Forbidding just one intersection, for permutations, J. Combin. Theory Ser. A 126 (2014), 136-165. https://doi.org/10.1016/j.jcta.2014.04.011
  10. D. Ellis, E. Friedgut, and H. Pilpel, Intersecting families of permutations, J. Amer. Math. Soc. 24 (2011), no. 3, 649-682. https://doi.org/10.1090/S0894-0347-2011-00690-5
  11. P. Erdos, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-318. https://doi.org/10.1093/qmath/12.1.313
  12. P. Frankl, On intersecting families of finite sets, J. Combin. Theory Ser. A 24 (1978), no. 2, 146-161. https://doi.org/10.1016/0097-3165(78)90003-1
  13. P. Frankl, The Erdos-Ko-Rado theorem is true for n = ckt, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, pp. 365-375, Colloq. Math. Soc. Jnos Bolyai, 18, North-Holland, Amsterdam-New York, 1978.
  14. P. Frankl and Z. Furedi, Nontrivial intersecting families, J. Combin. Theory Ser. A 41 (1986), no. 1, 150-153. https://doi.org/10.1016/0097-3165(86)90121-4
  15. P. Frankl, S. J. Lee, M. Siggers, and N. Tokushige, An Erdos-Ko-Rado theorem for cross t-intersecting families, J. Combin. Theory Ser. A 128 (2014), 207-249. https://doi.org/10.1016/j.jcta.2014.08.006
  16. P. Frankl and N. Tokushige, On r-cross intersecting families of sets, Combin. Probab. Comput. 20 (2011), no. 5, 749-752. https://doi.org/10.1017/S0963548311000289
  17. P. Frankl and R. M. Wilson, The Erdos-Ko-Rado theorem for vector spaces, J. Combin. Theory Ser. A 43 (1986), no. 2, 228-236. https://doi.org/10.1016/0097-3165(86)90063-4
  18. C. Godsil and K. Meagher, A new proof of the Erdos-Ko-Rado theorem for intersecting families of permutations, European J. Combin. 30 (2009), no. 2, 404-414. https://doi.org/10.1016/j.ejc.2008.05.006
  19. C. Y. Ku and I. Leader, An Erdos-Ko-Rado theorem for partial permutations, Discrete Math. 306 (2006), no. 1, 74-86. https://doi.org/10.1016/j.disc.2005.11.007
  20. C. Y. Ku and D. Renshaw, Erdos-Ko-Rado theorems for permutations and set partitions, J. Combin. Theory Ser. A 115 (2008), no. 6, 1008-1020. https://doi.org/10.1016/j.jcta.2007.12.004
  21. C. Y. Ku and K. B. Wong, On cross-intersecting families of set partitions, Electron. J. Combin. 19 (2012), no. 4, Paper 49, 9 pp.
  22. C. Y. Ku and K. B. Wong, An analogue of Hilton-Milner theorem for set partitions, J. Combin. Theory Ser. A 120 (2013), no. 7, 1508-1520. https://doi.org/10.1016/j.jcta.2013.05.001
  23. C. Y. Ku and K. B. Wong, An analogue of the Erdos-Ko-Rado theorem for weak compositions, Discrete Math. 313 (2013), no. 21, 2463-2468. https://doi.org/10.1016/j.disc.2013.07.012
  24. C. Y. Ku and K. B. Wong, On r-cross intersecting families of sets, Far East J. Math. Sci. 75 (2013), 295-300.
  25. C. Y. Ku and K. B. Wong, An Erdos-Ko-Rado theorem for permutations with fixed number of cycles, Electron. J. Combin. 21 (2014), no. 3, Paper 3.16, 9 pp.
  26. C. Y. Ku and K. B. Wong, A Deza-Frankl type theorem for set partitions, Electron. J. Combin. 22 (2015), no. 1, Paper 1.84, 11 pp.
  27. C. Y. Ku and K. B. Wong, An Analogue of the Hilton-Milner Theorem for weak compositions, Bull. Korean Math. Soc. 52 (2015), no. 3, 1007-1025. https://doi.org/10.4134/BKMS.2015.52.3.1007
  28. C. Y. Ku and K. B. Wong, On r-cross t-intersecting families for weak compositions, Discrete Math. 338 (2015), no. 7, 1090-1095. https://doi.org/10.1016/j.disc.2015.01.015
  29. C. Y. Ku and K. B. Wong, A non-trivial intersection theorem for permutations with fixed number of cycles, Discrete Math. 339 (2016), no. 2, 646-657. https://doi.org/10.1016/j.disc.2015.09.032
  30. C. Y. Ku and K. B. Wong, An intersecting theorem for integer sequence, preprint.
  31. C. Y. Ku and T. W. H. Wong, Intersecting families in the alternating group and direct product of symmetric groups, Electron. J. Combin. 14 (2007), no. 1, Research Paper 25, 15 pp.
  32. M. Matsumoto and N. Tokushige, The exact bound in the Erdos-Ko-Rado theorem for cross-intersecting families, J. Combin. Theory Ser. A 52 (1989), no. 1, 90-97. https://doi.org/10.1016/0097-3165(89)90065-4
  33. A. Moon, An analogue of the Erdos-Ko-Rado theorem for the Hamming schemes H(n, q), J. Combin. Theory Ser. A 32 (1982), no. 3, 386-390. https://doi.org/10.1016/0097-3165(82)90054-1
  34. L. Pyber, A new generalization of the Erdos-Ko-Rado theorem, J. Combin. Theory Ser. A 43 (1986), no. 1, 85-90. https://doi.org/10.1016/0097-3165(86)90025-7
  35. N. Tokushige, A product version of the Erdos-Ko-Rado theorem, J. Combin. Theory Ser. A 118 (2011), no. 5, 1575-1587. https://doi.org/10.1016/j.jcta.2011.01.010
  36. J. Wang and H. Zhang, Cross-intersecting families and primitivity of symmetric systems, J. Combin. Theory Ser. A 118 (2011), no. 2, 455-462. https://doi.org/10.1016/j.jcta.2010.09.005
  37. J. Wang and S. J. Zhang, An Erdos-Ko-Rado-type theorem in Coxeter groups, European J. Combin. 29 (2008), no. 5, 1112-1115. https://doi.org/10.1016/j.ejc.2007.07.002
  38. R. M. Wilson, The exact bound in the Erdos-Ko-Rado theorem, Combinatorica 4 (1984), no. 2-3, 247-257. https://doi.org/10.1007/BF02579226