DOI QR코드

DOI QR Code

A NOTE ON ZEROS OF BOUNDED HOLOMORPHIC FUNCTIONS IN WEAKLY PSEUDOCONVEX DOMAINS IN ℂ2

  • Ha, Ly Kim (Faculty of Mathematics and Computer Science University of Science Vietnam National University HoChiMinh City (VNU-HCM))
  • Received : 2016.05.17
  • Published : 2017.05.31

Abstract

Let ${\Omega}$ be a bounded, uniformly totally pseudoconvex domain in ${\mathbb{C}}^2$ with the smooth boundary b${\Omega}$. Assuming that ${\Omega}$ satisfies the negative ${\bar{\partial}}$ property. Let M be a positive, finite area divisor of ${\Omega}$. In this paper, we will prove that: if ${\Omega}$ admits a maximal type F and the ${\check{C}}eck$ cohomology class of the second order vanishes in ${\Omega}$, there is a bounded holomorphic function in ${\Omega}$ such that its zero set is M. The proof is based on the method given by Shaw [27].

Keywords

References

  1. B. Berndtsson, Integral formulas for the ${\theta}{\overline{{\theta}}}$-equation and zeros of bounded holomorphic functions in the unit ball, Math. Ann. 249 (1980), no. 2, 163-176. https://doi.org/10.1007/BF01351413
  2. A. Bonami and P. Charpentier, Solutions de l'equation $\overline{{\theta}}$ et zeros de la class de Nevanlinna dans certains domaines faiblement pseudoconvexes, Ann. Inst. Fourier (Grenoble) 32 (1982), 53-89. https://doi.org/10.5802/aif.894
  3. J. Bruna and J. del Castillo, Holder and $L^p$-estimates for the $\overline{{\theta}}$-equation in some convex domains with real-analytic boundary, Math. Ann. 296 (1984), no. 4, 527-539.
  4. J. Bruna, P. Charpentier, and Y. Dupain, Zero varieties for Nevanlinna class in convex domains of finite type in $C^n$, Ann. of Math. (2) 147 (1998), no. 2, 391-415. https://doi.org/10.2307/121013
  5. H. Cartan, Differential Forms, English transl., Hermann, Paris; Houghton-Mifflin, Boston, Mass., 1970.
  6. S. C. Chen andM. C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP, Studies in Advanced Mathematics, AMS, 2001.
  7. P. L. Duren, Theory of $H^p$ spaces, Academic Press, 1970.
  8. L. Gruman, The zeros of holomorphic functions in strictly pseudoconvex domains, Trans. Amer. Math. Soc. 207 (1975), 163-174, https://doi.org/10.1090/S0002-9947-1975-0382725-X
  9. L. K. Ha, Tangential Cauchy-Riemann equations on pseudoconvex boundaries of finite and infinite type in $C^2$ (Preprint).
  10. L. K. Ha, Zero varieties for the Nevanlinna class in weakly pseudoconvex domains of finite/ infinite type in $C^2$ (Preprint).
  11. L. K. Ha and T. V. Khanh, Boundary regularity of the solution to the complex Monge- Ampere equation on pseudoconvex domains of infinite type, Math. Res. Lett. 22 (2015), no. 2, 467-484. https://doi.org/10.4310/MRL.2015.v22.n2.a7
  12. L. K. Ha, T. V. Khanh, and A. Raich, $L^p$-estimates for the $\overline{{\theta}}$-equation on a class of infinite type domains, Internat. J. Math. 25 (2014), no. 11, 1450106, 15 pages.
  13. G. M. Henkin, Integral representations of functions holomorphic in strictly-pseudoconvex domains and some applications, Math. USSR Sbornik. 7 (1969), no. 4, 597-616. https://doi.org/10.1070/SM1969v007n04ABEH001105
  14. G. M. Henkin, The Lewy equation and analysis on pseudoconvex manifold, Russian Math. Surveys 32 (1977), no. 3, 59-130. https://doi.org/10.1070/RM1977v032n03ABEH001628
  15. G. M. Henkin, H. Lewy's equation and analysis on a pseudoconvex manifold II, Math. USSR Sbornik. 1 (1977), 63-94.
  16. T. V. Khanh, Supnorm and f-Holder estimates for $\overline{{\theta}}$ on convex domains of general type in $C^2$, J. Math. Anal. Appl. 430 (2013), no. 2, 522-531.
  17. J. J. Kohn, Boundary behaviour of $\overline{{\theta}}$ on weakly pseudoconvex manifolds of dimension two, J. Differentail Geom. 6 (1972), 523-542. https://doi.org/10.4310/jdg/1214430641
  18. P. Lelong, Integration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239-262.
  19. P. Lelong, Fonctions plurisousharmoniques et formes differentielles positives, Gordon and Breach, New York, Dunod, Paris, 1968.
  20. J. Noguchi and J. Winkelmann, Nevanlinna Theory in Several Complex Variables and Diophantine Approximation, Springer, Japan, 2014.
  21. R. M. Range, The Caratheodory metric and holomorphic maps on a class of weakly pseudoconvex domains, Pacific J. Math. 78 (1978), no. 1, 173-189. https://doi.org/10.2140/pjm.1978.78.173
  22. R. M. Range, On the Holder estimates for $\overline{{\theta}}$u = f on weakly pseudoconvex domains, Several complex variables (Cortona, 1976/1977), pp. 247-67, Scuola Norm. Sup. Pisa, Pisa, 1978.
  23. R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer-Vedag, Berlin/New York, 1986.
  24. A. V. Romanov, A formula and estimates for solutions of the tangential Cauchy-Riemann equation, Math. Sb. 99 (1976), 58-83.
  25. W. Rudin, Function theory in the unit ball of $C^n$, Springer-Verlag, New York, 1980.
  26. M. C. Shaw, Holder and $L^p$ estimates for $\overline{{\theta}}_b$ on weakly pseudoconvex boundaries in $C^2$, Math. Ann. 279 (1988), no. 4, 635-652. https://doi.org/10.1007/BF01458533
  27. M. C. Shaw, Prescribing zeros of functions in the Nevanlinna class on weakly pseudo-convex domains in $C^2$, Trans. Amer. Math. Soc. 313 (1989), no. 1, 407-418. https://doi.org/10.1090/S0002-9947-1989-0961629-5
  28. H. Skoda, Valeurs au bord pour les solutions de l'operateur d", et characterisation des zeros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), no. 3, 225-299.
  29. J. Verdera, $L^{\infty}$-continuity of Henkin operators solving $\overline{{\theta}}$ in certain weakly pseudoconvex domains of $C^2$, Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), no. 1-2, 25-33. https://doi.org/10.1017/S0308210500025932
  30. A. Weil, Sur les theorems de de Rham, Comment. Math. Helv. 26 (1952), 119-145. https://doi.org/10.1007/BF02564296
  31. G. Zampieri, Complex Analysis and CR Geometry, University Lecture Series, 43. American Mathematical Society, Providence, RI, 2008.