DOI QR코드

DOI QR Code

A WEIGHTED-PATH FOLLOWING INTERIOR-POINT ALGORITHM FOR CARTESIAN P(κ)-LCP OVER SYMMETRIC CONES

  • Mansouri, Hossein (Department of Applied Mathematics Faculty of Mathematical Sciences Shahrekord University) ;
  • Pirhaji, Mohammad (Department of Applied Mathematics Faculty of Mathematical Sciences Shahrekord University) ;
  • Zangiabadi, Maryam (Department of Applied Mathematics Faculty of Mathematical Sciences Shahrekord University)
  • Received : 2016.06.08
  • Accepted : 2017.03.08
  • Published : 2017.07.31

Abstract

Finding an initial feasible solution on the central path is the main difficulty of feasible interior-point methods. Although, some algorithms have been suggested to remedy this difficulty, many practical implementations often do not use perfectly centered starting points. Therefore, it is worth to analyze the case that the starting point is not exactly on the central path. In this paper, we propose a weighted-path following interior-point algorithm for solving the Cartesian $P_{\ast}({\kappa})$-linear complementarity problems (LCPs) over symmetric cones. The convergence analysis of the algorithm is shown and it is proved that the algorithm terminates after at most $O\((1+4{\kappa}){\sqrt{r}}{\log}{\frac{x^0{\diamond}s^0}{\varepsilon}}\)$ iterations.

Keywords

References

  1. M. Achache, A new primal-dual path-following method for convex quadratic programming, Comput. Appl. Math, 25 (2006), no. 1, 97-110.
  2. Z. Darvay, A weighted-path-following method for linear optimization, Stud. Univ. Babes-Bolyai Inform. 47 (2002), no. 2, 3-12.
  3. Z. Darvay, New interior point algorithms in linear programming, Adv. Model. Optim. 5 (2003), no. 1, 51-92.
  4. J. Faraut and A. Koranyi, Analysis on Symmetric Cones, Oxford University Press, New York, 1994.
  5. L. Faybusovich, Euclidean Jordan algebras and interior-point algorithms, Positivity 1 (1997), no. 4, 331-357. https://doi.org/10.1023/A:1009701824047
  6. L. Faybusovich, A Jordan-algebraic approach to potential-reduction algorithms, Math. Z. 239 (2002), no. 1, 117-129. https://doi.org/10.1007/s002090100286
  7. G. Gu, M. Zangiabadi, and C. Roos, Full Nesterov-Todd step interior-point methods for symmetric optimization, European J. Oper. Res. 214 (2011), no. 3, 473-484. https://doi.org/10.1016/j.ejor.2011.02.022
  8. B. Jansen, C. Roos, T. Terlaky, and J. Vial, Long-step primal-dual target-following algorithms for linear programming, Math. Methods Oper. Res. 44 (1996), no. 1, 11-30. https://doi.org/10.1007/BF01246327
  9. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Lecture Notes in Computer Science, vol. 538. Springer, New York, 1991.
  10. Z. Y. Luo and N. H. Xiu, Path-following interior-point algorithms for the Cartesian $P_{\ast}{\kappa}$-LCP over symmetric cones, Sci. China Math. 52 (2009), no. 8, 1769-1784. https://doi.org/10.1007/s11425-008-0174-0
  11. H. Mansouri and M. Pirhaji, A polynomial interior-point algorithm for linear complementarity problems, J. Optim. Theory Appl. 157 (2013), no. 2, 451-461. https://doi.org/10.1007/s10957-012-0195-2
  12. H. Mansouri, M. Zangiabadi, and M. Pirhaji, A full-Newton step O(n) infeasible interior-point algorithm for linear complementarity problems, Nonlinear Anal. Real World Appl. 12 (2011), no. 1, 545-561. https://doi.org/10.1016/j.nonrwa.2010.06.039
  13. F. A. Potra, An infeasible interior point method for linear complementarity problems over symmetric cones, Proceedings of the 7th International Conference of Numerical Analysis and Applied Mathematics, Rethymno, Crete, Greece, 18-22 September 2009, pp. 1403-1406. Am. Inst. of Phys., New York, 2009.
  14. B. K. Rangarajan, Polynomial convergence of infeasible-interior-point methods over symmetric cones, SIAM J. Optim. 16 (2006), no. 4, 1211-1229. https://doi.org/10.1137/040606557
  15. C. Roos, A full-Newton step O(n) infeasible interior-point algorithm for linear optimization, SIAM J. Optim. 16 (2006), no. 4, 1110-1136. https://doi.org/10.1137/050623917
  16. S. H. Schmieta and F. Alizadeh, Extension of primal-dual interior-point algorithms to symmetric cones, Math. Program. 96 (2003), no. 3, 409-438. https://doi.org/10.1007/s10107-003-0380-z
  17. J. F. Sturm, Similarity and other spectral relations for symmetric cones, Linear Algebra Appl. 312 (2000), no. 1-3, 135-154. https://doi.org/10.1016/S0024-3795(00)00096-3
  18. M. V. C. Vieira, Jordan Algebraic Approach to Symetric Optimization, PhD thesis, Delft University of Thecnology, 2007.
  19. G. Q. Wang and Y. Q. Bai, A primal-dual interior-point algorithm for second-order cone optimization with full Nesterov-Todd step, Appl. Math. Comput. 215 (2009), no. 3, 1047-1061. https://doi.org/10.1016/j.amc.2009.06.034
  20. G. Q. Wang and Y. Q. Bai, A new primal-dual path-following interior-point algorithm for semidefinite optimization, J. Math. Anal. Appl. 353 (2009), no. 1, 339-349. https://doi.org/10.1016/j.jmaa.2008.12.016
  21. G. Q. Wang and Y. Q. Bai, A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric optimization, J. Optim. Theory Appl. 154 (2012), no. 3, 966-985. https://doi.org/10.1007/s10957-012-0013-x
  22. G. Q. Wang and Y. Q. Bai, A class of polynomial interior-point algorithms for the Cartesian P-matrix linear complementarity problem over symmetric cones, J. Optim. Theory Appl. 152 (2012), no. 3, 739-772. https://doi.org/10.1007/s10957-011-9938-8
  23. G. Q. Wang and G. Lesaja, Full Nesterov-Todd step feasible interior-point method for the Cartesian $P_{\ast}{\kappa}$-SCLCP, Optim. Methods Softw. 28 (2013), no. 3, 600-618. https://doi.org/10.1080/10556788.2013.781600
  24. A. Yoshise, Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones, SIAM J. Optim. 17 (2006), no. 4, 1129-1153. https://doi.org/10.1137/04061427X
  25. Y. B. Zhao and J. Han, Two interior-point methods for nonlinear $P_{\ast}{\kappa}$-complementaritarity problems, J. Optim. Theory Appl. 102 (1999), no. 3, 659-679. https://doi.org/10.1023/A:1022606324827