DOI QR코드

DOI QR Code

Flexural Behavior of High-strength Concrete Beams of 90 MPa According to Curing Temperature

양생온도에 따른 90 MPa 수준의 고강도 철근 콘크리트 보의 휨거동

  • 황철성 (가천대학교 토목환경공학과)
  • Received : 2017.07.19
  • Accepted : 2017.08.09
  • Published : 2017.09.01

Abstract

In this study, the flexural behavior of high strength concrete members with different curing condition of 90 MPa of compressive strength was investigated. Experimental parameters included normal and low temperature curing conditions, tensile steel amount and concrete compressive strength. 8 beam members were fabricated and flexural tests were carried out. Crack spacing, load-deflection relation, load-strain relation and ductility index were determined. Experimental results show that as the amount of rebar increases, the number of cracks increases and the crack spacing decreases. The higher the concrete strength, the smaller the number of cracks, but the effect is significantly smaller than the amount of rebar. As a result of comparison with the proposed average crack spacing in the design criteria, the experimental results are slightly larger than the results of the proposed formula, but the proposed formula does not reflect the concrete strength and curing conditions. The ductility index of normal temperature cured members was 3.36~6.74 and the ductility index of low temperature cured members was 1.51~2.82. The behavior of low temperature cured members was found to be lower than that of normal temperature cured members. As a result of comparing the ductility index with the existing studies similar to the experimental members, the ductility index of the high strength concrete member was larger than the ductility index of the ordinary strength concrete of the previous study. Further research is needed to understand more specific results.

본 연구에서는 양생조건이 다른 압축강도 90 MPa 수준의 고강도 콘크리트 부재의 휨거동 실험을 수행하였다. 실험변수는 정상 및 저온 양생 조건, 인장 철근량 및 콘크리트 압축강도 수준 등을 고려하였다. 8개의 보 부재를 제작하여 휨 실험을 수행하였으며 균열 간격, 하중-처짐 관계, 하중-변형률 관계 및 연성지수를 파악하였다. 실험결과는 철근량이 증가함에 따라 균열 개수는 증가하고 균열간격은 감소하는 경향을 나타내며, 콘크리트 강도가 높을수록 균열개수가 줄어들기는 하지만 그 효과는 철근량보다는 상당히 작은 것을 알 수 있었다. 설계기준에서 제안된 평균 균열 간격 식과 비교한 결과, 실험결과가 제안식의 결과보다 약간 크게 나타났으나, 제안식은 콘크리트 강도 및 양생조건을 반영하지 못하는 문제점이 있다. 정상 양생된 부재들의 연성지수는 3.36~6.74이며, 저온 양생된 부재들의 연성지수는 1.51~2.82으로 나타나, 저온 양생된 부재들의 거동은 정상 양생된 부재들에 비해서 연성도지수가 저감됨을 확인하였으며, 본 연구와 기존 연구의 연성지수를 비교한 결과, 고강도 콘크리트 부재의 연성지수는 선행연구의 보통강도 콘크리트의 연성지수 보다 크게 나타났으나, 더 구체적인 결과를 파악하기 위해서는 추가연구가 필요하다고 판단된다.

Keywords

References

  1. AASHTO LRFD Bridge Design Specification (2004), 3rd edition, American Association of State Highway and Transportations Officials, Washington, D.C.
  2. ACI Committee 318 (2002), Building Code Requirements for Structural Concrete (ACI 318-02), American Concrete Institute, Farmington Hills, MI, USA, 318.
  3. Comite Euro-Internationale du Beton (1978), CEB-FIP Model Code-Design Code; Comite Euro-International du Beton, CEB Bulletin d' Information, Thomas Telford, London, UK, 124-125.
  4. Federal highway administration (FHA) (2006), Material property characterization of ultra-high performance concrete 1st ed., Washington D.C: , pp.23-49.
  5. Hong, G. H. (2011), Flexural Performance Evaluation of Reinforced Concrete Beams with High-Stregnth Concrete and Reinforcing Bars, Journal of Architectural Institute of Korea, Architectural Institute of Korea, 27(6), 49-56.
  6. Jang, I. Y., Park, H. G., Kim, S. S., Kim, J. H., and Kim, Y. G. (2008), On the Ductility of High-Strength Concrete Beams, International Journal of Concrete Structures and Materials, 2(2), 115-122. https://doi.org/10.4334/IJCSM.2008.2.2.115
  7. Korea Concrete Institute (2012), Design Code for Concrete Structurure. Gimundang, Seoul.
  8. Mansur, A. A., Chin, M. S., and Wee, T. H. (1997), Flexural Behavior of High-Strength Concrete Beams, ACI Structural Journal, 94(6), 663-674.
  9. Mun, J. S., Yang, K. H., Jeon, Y. S.,(2014), Maturity-Based Model for Concrete Compressive Strength with Different Supplementary Cementitious Materials, Journal of Korea Institute for Structural Maintenance and Inspection, 18(6), 082-089.
  10. Pam, H. J., Kwan, A. K. H., and Islam, M. S. (2001), Flexural Strength and Ductility of Reinforced Normal-and High-Strength Concrete Beams, Proceeding of the ICE-Structures and Buildings, 146(4), 381-389 (30-100).
  11. Rashid, M. A., and Mansur, M. A. (2005), Reinforced High-Strength Concrete Beams in Flexure, ACI Structural Journal, 102(3), 462-471.
  12. Russell, H. G. (1997b), High-Performance Concrete-From Buildings to Bridges, Concrete International, 19(8), 62-63.
  13. Russell, H. G., Voltz, J. S., and Bruce, R. N. (1997a), Optimized Sections for High-Strength Concrete Bridge Girders, Report No. FHWA-RD-95-180, FHWA, U.S. Department of Transportation, 156 pp.
  14. Sarkar, S., Adwan, O., and Munday, J. G. L. (1997), High Strength Concrete: an Investigation of the Flexural Behavior of High Strength RC Beams, Structural Engineer, 75(7), 115-121.
  15. Wu, Z. (2006), Behavior of High-Strength Concrete Members Under Pure Flexure and Axial-Flexural Loadings, PhD Thesis, Dissertation of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina.
  16. Yang, K. H., Mun, J. S., Kim, D. G., Cho, M. S. (2016), Comparison of Strength-Maturity Models Accounting for Hydration Heat in Massive Walls, International Journal of Concrete Structures and Materials, 10(1), 47-60. https://doi.org/10.1007/s40069-016-0128-9