DOI QR코드

DOI QR Code

Effect of Fineness of GGBS on the Hydration and Mechanical Properties in HIGH Performance HVGGBS Cement Paste

고성능 하이볼륨 슬래그 시멘트 페이스트의 고로슬래그 미분말 분말도에 따른 수화 및 강도 특성

  • 최영철 (가천대학교 건축공학과) ;
  • 신동철 (가천대학교 건축공학과) ;
  • 황철성 (가천대학교 토목환경공학과)
  • Received : 2017.07.19
  • Accepted : 2017.08.08
  • Published : 2017.09.01

Abstract

Recently, lots of researches on concrete with high volume mineral admixtures such as ground granulated blast-furnace slag(GGBS) have been carried out to reduce greenhouse gas. The high volume GGBS concrete has advantages such as low heat, high durability, but it has a limitation in practical field application, especially low strength development in early ages. This study investigated the compressive strength and hydration characteristics of high performanc and volume GGBS cement pastes with low water to binder ratio. The effects of fineness($4,330cm^2/g$, $5,320cm^2/g$, $6,450cm^2/g$, $7650cm^2/g$) and replacement(35%, 50%, 65%, 80%) of GGBS on the compressive strength, setting and heat of hydration were analyzed. Experimental results show that the combination of high volume slag cement paste with low water to binder ratio and high fineness GGBS powder can improve the compressive strength at early ages.

최근 온실가스 감축을 위해 시멘트 클링커를 대체하여 고로슬래그 미분말을 다량 치환한 하이볼륨 슬래그 시멘트에 대한 연구 활발히 진행되고 있다. 하지만, 수화열 및 내구성 등 다양한 장점에도 불구하고 초기 재령에서의 낮은 강도 발현 등의 문제점으로 인해 실제 현장의 적용에 한계점을 가지고 있다. 본 연구는 이러한 점을 극복하고자 GGBFS 혼입률에 따른 페이스트의 압축강도, 수화열 등의 특성을 분석하였다. GGBS 분말도에 따른 4종류와 치환율 35%, 50%, 65%, 80% 4수준으로 하여 총 16개의 배합에 대해 실험을 수행하였다. 실험결과 낮은 물-바인더 비에 의한 고성능 하이볼륨 슬래그 시멘트 페이스트 배합은 초기 재령에서의 낮은 압축강도의 한계점을 극복할 수 있을 것으로 판단된다. 또한 GGBS의 분말도는 고성능 하이볼륨 슬래그 시멘트 페이스트의 초기 재령에서의 압축강도 증진에는 효과가 있지만, 28일 이후의 장기 강도에는 큰 영향이 없는 것으로 나타났다.

Keywords

References

  1. Chong, W., Changhui, Y., Fang L., Chaojun, W., and Xincheng, P. (2012), Preparation of ultra-high performance concrete with common technology and materials, Cement and Concrete Composites, 34(4), 538-544. https://doi.org/10.1016/j.cemconcomp.2011.11.005
  2. Gengying, L. and Xiaohua, Z. (2003), Properties of concrete incorporating fly ash and ground granulated blast-furnace slag, Cement and Concrete Composites, 25(3), 293-299. https://doi.org/10.1016/S0958-9465(02)00058-6
  3. Hester, D., Mcnally, C., and Richardson, M. G. (2005), A Study of the influence of slag alkali level on the alkali-silica reactivity of slag concrete, Construction and Building Materials, 19(9), 661-665. https://doi.org/10.1016/j.conbuildmat.2005.02.016
  4. Kim, S. D., Kim, S. Y., Bae, K. S., Park, S. H., and Lee, B. S. (2010), Field application of 80 MPa high strength fire resistant concrete using ternary blended cement, Journal of the Korea Institute of Building Construction, 10(5), 113-119 (in Korean, with English abstract). https://doi.org/10.5345/JKIC.2010.10.5.113
  5. Leng, F., Feng, N., and Lu, X. (2000), An experiment study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete, Cement and Concrete Research, 30(6), 989-992. https://doi.org/10.1016/S0008-8846(00)00250-7
  6. Li, J., Tharakan, P., Macdonald, D., and Liang, X. (2013), Technological, economic and financial prospects of carbon dioxide capture in the cement industry, Energy Policy, 61, 1377-1387. https://doi.org/10.1016/j.enpol.2013.05.082
  7. Malhotra, V. M. (2000), Role of supplementary cementing materials in reducing greenhouse gas emissions, Concrete Technology for a Sustainable Development in the 21st Century, London: E&F Spon; Gjory, O.E., Sakai K(ed).
  8. Mehta, P. H. (2000), Concrete technology for sustainable development - An overview of essential elements, Concrete Technology for a Sustainable Development in the 21st Century, London: E&F Spon; Gjory, O.E., Sakai, K(ed).
  9. Papayianni, I. and Anastasiou E. (2006), Optimization of ladle furnace slag for use as a supplementary cementing material, Measuring, Monitoring and Modeling Concrete Properties, 411-417.
  10. Ryu, D. W., Kim, W. J., Yang, W. H., and Park, D. C. (2012), An experimental study on the carbonation and drying shrinkage of concrete using high volumes of ground granulated blastfurnace slag, Journal of the Korea Institute of Building Construction, 12(4), 393-400 (in Korean, with English abstract). https://doi.org/10.5345/JKIBC.2012.12.4.393
  11. Ryu, D. W., Kim, W. J., Yang, W. H., You, J. H., and Ko, J. W. (2012), An experimental study on the freezing-thawing and chloride resistance of concrete using high volumes of GGBS, Journal of the Korea Institute of Building Construction, 12(3), 315-322 (in Korean, with English abstract). https://doi.org/10.5345/JKIBC.2012.12.3.315
  12. Setien, J., Hernandez, D., and Gonzalez, J. J. (2009), Characterization of ladle furnace basic slag for use as a construction material, Construction and Building Materials. 23(5), 1788-1794. https://doi.org/10.1016/j.conbuildmat.2008.10.003
  13. Siddique, R. and Bennacer, R. (2012), Use of iron and steel industry by-product(GGBS) in cement paste and mortar, Resources, Conservation and Recycling, 69, 29-34. https://doi.org/10.1016/j.resconrec.2012.09.002
  14. Yilmaz, B. and Olgun, A. (2008), Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone, Cement and Concrete Composites, 30(3), 194-201. https://doi.org/10.1016/j.cemconcomp.2007.07.002
  15. Yilmaz, B. and Olgun, A.(2008), Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone, Cement and Concrete Composites, 30(3), 194-201. https://doi.org/10.1016/j.cemconcomp.2007.07.002