DOI QR코드

DOI QR Code

Lutein, β-Carotene, and Polyphenol Contents of Sweet Potato Leaves under Different Extraction Conditions

추출조건에 따른 고구마 잎의 Lutein, β-Carotene 및 Polyphenol 함량

  • Li, Meishan (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Jang, Gwi Yeong (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Lee, Sang Hoon (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Hwang, Se Gu (Department Crop Science, Chungbuk Agricultural Research and Extension Service) ;
  • Sin, Hyun Man (Department Crop Science, Chungbuk Agricultural Research and Extension Service) ;
  • Kim, Hong Sig (Department of Crop Science, Chungbuk National University) ;
  • Lee, Junsoo (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Jeong, Heon Sang (Department of Food Science and Biotechnology, Chungbuk National University)
  • ;
  • 장귀영 (충북대학교 식품생명공학과) ;
  • 이상훈 (충북대학교 식품생명공학과) ;
  • 황세구 (충북농업기술원 작물연구과) ;
  • 신현만 (충북농업기술원 작물연구과) ;
  • 김홍식 (충북대학교 식물자원학과) ;
  • 이준수 (충북대학교 식품생명공학과) ;
  • 정헌상 (충북대학교 식품생명공학과)
  • Received : 2017.06.13
  • Accepted : 2017.09.27
  • Published : 2017.11.30

Abstract

This study was carried out to determine the simultaneous extraction conditions of functional components (lutein, ${\beta}$-carotene, total polyphenol, flavonoids, and phenolic compounds) from sweet potato leaves and to evaluate the antioxidant activities. Extraction conditions included different ethanol concentrations (1st extraction: 99.9% ethanol; 2nd extraction: 50~90% ethanol) and times (30, 60, and 90 min). The highest values of lutein and ${\beta}$-carotene content were obtained by the 2nd extraction at an ethanol concentration of 90%. The extraction yields of lutein and ${\beta}$-carotene decreased with increasing extraction time. The maximum polyphenol, flavonoid, and total phenolic acid contents and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities were 32.3 mg gallic acid equivalent/g, 17.0 mg catechin equivalent/g, 2,842.6 mg/100 g, 17.0 mg ascorbic acid equivalent/g, and 1.94 mg/mL ($IC_{50}$) at the 2nd extraction with an ethanol concentration of 60%. The optimum extraction conditions were as follows; ethanol concentrations of the extraction solvent were 99.9% (1st extraction) and 60% (2nd extraction), and extraction time was 30 min.

본 연구는 고구마 잎에 함유된 carotenoids류인 lutein, ${\beta}$-carotene과 항산화 성분을 효과적으로 동시에 추출할 수 있는 방법을 연구하고 각 추출물에 대한 항산화 효과를 평가하였다. 1차 추출은 99.9% 에탄올을 사용하였고 2차 추출은 에탄올 농도를 50~90%로 증가시키며 추출하였다. Lutein과 ${\beta}$-carotene은 2차 추출 에탄올 농도 90%에서 각각 77.9% 및 68.5%로 가장 높은 추출률을 나타내었고 추출시간이 길어짐에 따라 감소하였다. Polyphenol, flavonoid 및 DPPH, ABTS 라디칼 소거능은 2차 추출 에탄올 농도 60%에서 각각 32.3 mg gallic acid equivalent/g, 17.0 mg catechin equivalent/g 및 1.94 mg/mL(EDA, $IC_{50}$), 17.0 mg AA eq/g(AEAC)으로 가장 높게 나타났으며, 추출시간이 길어짐에 따라 감소하였다. 또한, 총 페놀산 함량은 2차 추출을 에탄올 60~70%에서 추출 시 가장 높은 함량을 나타내었다. 지용성 물질인 carotenoids뿐만 아니라 대량으로 존재하는 수용성 물질인 페놀류를 동시에 추출하기 위해서는 99.9%의 에탄올을 사용하여 1차 추출을 하고, 60% 정도의 에탄올로 2차 추출을 30분 동안 추출 시 높은 추출률을 나타내어 루테인, 베타카로틴 및 폴리페놀 동시 추출법으로 가장 적합할 것으로 판단되었다.

Keywords

References

  1. Bovell-Benjamin AC. 2007. Sweet potato: A review of its past, present, and future role in human nutrition. Adv Food Nutr Res 52: 1-59.
  2. Ishida H, Suzuno H, Sugiyama N, Innami S, Tadokoro T, Maekawa A. 2000. Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas poir). Food Chem 68: 359-367. https://doi.org/10.1016/S0308-8146(99)00206-X
  3. Yoshimoto M, Yahara S, Okuno S, Islam MS, Ishiguro K, Yamakawa O. 2002. Antimutagenicity of mono-, di-, and tricaffeoylquinic acid derivatives isolated from sweetpotato (Ipomoea batatas L.) leaf. Biosci Biotechnol Biochem 66: 2336-2341. https://doi.org/10.1271/bbb.66.2336
  4. Oki T, Masuda M, Furuta S, Nishiba Y, Terahara N, Suda I. 2002. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. J Food Sci 67: 1752-1756. https://doi.org/10.1111/j.1365-2621.2002.tb08718.x
  5. Fu HF, Xie B, Ma S, Zhu X, Fan G, Pan S. 2011. Evaluation of antioxidant activities of principal carotenoids available in water spinach (Ipomoea aquatica). J Food Compos Anal 24: 288-297. https://doi.org/10.1016/j.jfca.2010.08.007
  6. Lee HS, Kim YN. 1997. Beta-carotene and lutein contents in green leafy vegetables. J East Asian Diet Life 7: 175-180.
  7. Jo JO, Jung IC. 2000. Changes in carotenoid contents of several green-yellow vegetables by blanching. Korean J Soc Food Sci 16: 17-21.
  8. Kim HY, Lim Y, Russell RM. 2003. Changes in carotenoids contents in pureed and cooked carrot and spinach during storage. Korean J Soc Food Cookery Sci 19: 83-95.
  9. Stoica A, Dobre T, Stroescu M, Sturzoiu A, Parvulescu OC. 2015. From laboratory to scale-up by modelling in two cases of ${\beta}$-carotene extraction from vegetable products. Food Bioprod Process 94: 218-228. https://doi.org/10.1016/j.fbp.2014.02.005
  10. Semba RD, Dagnelie G. 2003. Are lutein and zeaxanthin conditionally essential nutrients for eye health?. Med Hypotheses 61: 465-472. https://doi.org/10.1016/S0306-9877(03)00198-1
  11. Gale CR, Hall NF, Phillips DI, Martyn CN. 2001. Plasma antioxidant vitamins and carotenoids and age-related cataract. Ophthalmology 108: 1992-1998. https://doi.org/10.1016/S0161-6420(01)00833-8
  12. Mares-Perlman JA, Millen AE, Ficek TL, Hankinson SE. 2002. The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J Nutr 132: 518S-524S. https://doi.org/10.1093/jn/132.3.518S
  13. Lee JS, Shin MJ, Park YK, Ahn YS, Chung MN, Kim HS, Kim JM. 2007. Antibacterial and antimutagenic effects of sweetpotato tips extract. Korean J Crop Sci 52: 303-310.
  14. Choi Y, Lim H, Woo S, Kim HS, Jong SK, Lee J. 2007. Lutein contents of soybeans (Glycine max L.) cultivated in Korea. Korean J Food Sci Technol 39: 580-583.
  15. Lee HK, Hwang IG, Kim HY, Woo KS, Lee SH, Woo SH, Lee J, Jeong HS. 2010. Physicochemical characteristic and antioxidant activities of cereals and legumes in Korea. J Korean Soc Food Sci Nutr 39: 1399-1404. https://doi.org/10.3746/jkfn.2010.39.9.1399
  16. Choi Y, Kim M, Shin JJ, Park JM, Lee J. 2003. The antioxidant activities of the some commercial teas. J Korean Soc Food Sci Nutr 32: 723-727. https://doi.org/10.3746/jkfn.2003.32.5.723
  17. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  18. Okawa M, Kinjo J, Nohara T, Ono M. 2001. DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol Pharm Bull 24: 1202-1205. https://doi.org/10.1248/bpb.24.1202
  19. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964. https://doi.org/10.1021/jf0255937
  20. Jo IH, Kim CY, Lee TW, Lee GH, Choi YH. 2010. Optimization of extraction of effective components from Vitis coignetiae, the crimson glory vine. Korean J Food Preserv 17: 659-666.
  21. Heo JY. 2013. Optimization of lutein extraction in green tea using ASE and its quantitative and qualitative analysis by UPLC. MS Thesis. Chung-Ang University, Seoul, Korea. p 24.
  22. Park KJ, Lim JH, Kim BK, Jeong JW, Kim JC, Lee MH, Cho YS, Jung H. 2009. Optimization of extraction conditions to obtain functional components from buckwheat (Fagopyum esculentum M.) sprouts, using response surface methodology. Korean J Food Preserv 16: 734-741.
  23. Sahin S, Samli R. 2013. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason Sonochem 20: 595-602. https://doi.org/10.1016/j.ultsonch.2012.07.029
  24. Kang JR, Lee SJ, Kwon HJ, Kwon MH, Sung NJ. 2012. Establishment of extraction conditions for the optimization of the black garlic antioxidant activity using the response surface methodology. Korean J Food Preserv 19: 577-585. https://doi.org/10.11002/kjfp.2012.19.4.577
  25. Woo KS, Lee SH, Noh JW, Hwang IG, Lee YR, Park HJ, Lee J, Kang TS, Jeong HS. 2009. Optimization of extraction conditions for dried jujube by response surface methodology. J Korean Soc Food Sci Nutr 38: 244-251. https://doi.org/10.3746/jkfn.2009.38.2.244
  26. Jang M, Hong EY, Cheong JH, Kim GH. 2012. Antioxidative components and activity of domestic Cirsium japonicum extract. J Korean Soc Food Sci Nutr 41: 739-744. https://doi.org/10.3746/jkfn.2012.41.6.739
  27. Yoon SR, Jeong YJ, Lee GD, Kwon JH. 2003. Changes in phenolic compounds properties of Rubi Fructus extract depending on extraction conditions. J Korean Soc Food Sci Nutr 32: 338-345. https://doi.org/10.3746/jkfn.2003.32.3.338
  28. Jung JK, Lee SU, Kozukue N, Levin CE, Friedman M. 2011. Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots. J Food Compos Anal 24: 29-37. https://doi.org/10.1016/j.jfca.2010.03.025
  29. Lee JW, Do JH, Lee SK, Yang JW. 2000. Determination of total phenolic compounds from Korean red ginseng, and their extraction conditions. J Ginseng Res 24: 64-67.
  30. Gao Y, Nagy B, Liu X, Simandi B, Wang Q. 2009. Supercritical $CO_{2}$ extraction of lutein esters from marigold (Tagetes erecta L.) enhanced by ultrasound. J Supercrit Fluids 49: 345-350. https://doi.org/10.1016/j.supflu.2009.02.006