DOI QR코드

DOI QR Code

On Utilization of Inactive Storage in Dam during Drought Period

가뭄 극복을 위한 댐의 비활용용량 활용 방안 연구

  • Joo, Hongjun (Department of Civil Engineering, Inha University) ;
  • Kim, Deokhwan (Water Resources Systems Research Institute, Inha University) ;
  • Kim, Jungwook (Department of Civil Engineering, Inha University) ;
  • Bae, Younghye (Department of Civil Engineering, Inha University) ;
  • Kim, Hung Soo (Department of Civil Engineering, Inha University)
  • 주홍준 (인하대학교 사회인프라공학과) ;
  • 김덕환 (인하대학교 수자원시스템연구소) ;
  • 김정욱 (인하대학교 사회인프라공학과) ;
  • 배영혜 (인하대학교 사회인프라공학과) ;
  • 김형수 (인하대학교 사회인프라공학과)
  • Received : 2018.08.07
  • Accepted : 2018.10.08
  • Published : 2018.11.30

Abstract

The purpose of this study is to suggest a structure plan for improving the utilization of inactive storage in the dam for overcoming the drought. Inactive storage in the dam is composed of the emergency storage and dead storage. The emergency storage can be used for the case of emergency such as drought. But, in general, the dead storage for sedimentation is not used even for the emergency. Therefore, this study considers the part of dead storage that the sedimentation is not progressed yet can be used during the severe drought period and is called "drought storage in a dam". The accurate Sediment Level(SL) analysis for the computation of the drought storage should be performed and so the present and future SL in the dam reservoir is estimated using SED-2D linked with RMA-2 model of SMS. After the consideration of additionally available storage capacity based on the estimated SL, the drought storage is finally determined. Present data based on historical data, future predicted future climate factors by Representative Concentrarion Pathways(RCP) 8.5 scenario. Then, using the TANK model, dam inflows were determined, and future period such as SL and drought storage were suggested. As the results, we have found that the available drought storage will be reduced in the future when we compare the present drought storage with the future one. This is due to a increase variability of climate change. Therefore, we should take the necessary study for the increase of available drought storage in the future.

본 연구에서는 가뭄 극복을 위하여 댐의 비활용용량 구간에 있는 저수량의 활용을 제고할 수 있는 구조적인 방안을 마련하고자 한다. 댐에서의 비활용용량(inactive storage)은 비상용량(emergency storage)과 사수용량(dead storage)으로 구성되어 있으며, 비상용량은 가뭄과 같은 비상시에 활용가능 하도록 하고 있지만 사수용량은 퇴사가 진행되는 구간으로 가정하여 일반적으로 정상적인 이용이 불가능한 용량으로 정해져 있다. 그러나 본 연구에서는 극심한 가뭄시에 비상용량과 더불어 사수용량 일부를 활용할 수 있는 방안을 모색하였으며, 비상용량과 퇴사위(Sediment Level, SL) 위의 사수용량을 추가적으로 활용할 수 있다고 가정하였고, 이 구간을 '댐의 갈수용량'이라고 새롭게 명명하였다. 갈수용량의 산정을 위해서는 정확한 퇴사위 분석이 선행되어야하므로, 본 연구에서는 SMS의 RMA-2 및 SED-2D 모형을 이용하여 현재와 미래의 댐 저수지의 퇴사위를 산정하였으며, 추가 이용 가능한 용량을 고려한 뒤 최종적으로 갈수용량을 산정하였다. RMA-2 및 SED-2D 모형 구축을 위해 현재는 과거 관측 자료를 이용하였으며, 미래는 대표농도경로(Representative Concentration Pathways, RCP) 8.5 시나리오에 의해 미래 기후 인자를 예측하고 TANK 모형을 이용하여 댐 유입량을 결정한 뒤 미래 기간별 퇴사위를 예측하였다. 현재와 미래의 퇴사위를 바탕으로 갈수용량을 제시한 결과, 활용할 수 있는 갈수용량은 현재에 비해 감소되었으며 특히, 미래 기간이 진행될수록 활용할 수 있는 양이 점진적으로 감소하는 결과를 보였다. 이는, 기후 변화의 변동성이 증가하는 것에 기인하며, 미래에 활용할 수 있는 갈수용량의 증대를 위해 기후 적응 대책 및 퇴사량을 효율적으로 저감할 수 있는 연구가 추가로 필요할 것으로 판단된다.

Keywords

HKSJBV_2018_v20n4_353_f0001.png 이미지

Fig. 1. Definition of water level, storage capacity distribution, and inactive storage in dam

HKSJBV_2018_v20n4_353_f0002.png 이미지

Fig. 2. Definition of drought storage in dam

HKSJBV_2018_v20n4_353_f0003.png 이미지

Fig. 3. Location map of Imha dam

HKSJBV_2018_v20n4_353_f0004.png 이미지

Fig. 4. Simulated SL in Imha dam reservoir by RMA-2 & SED-2D model (present)

HKSJBV_2018_v20n4_353_f0005.png 이미지

Fig. 5. Future climate change simulation by year ((a) Precipitation, (b) Evapotranspiration, (c) Dam inflow)

HKSJBV_2018_v20n4_353_f0006.png 이미지

Fig. 6. Simulated SL in Imha dam reservoir by RMA-2 & SED-2D model. (a) Period 1, (b) Period 2, (c) Period 3

HKSJBV_2018_v20n4_353_f0007.png 이미지

Fig. 7. Comparison of present and future drought storage in imha dam

Table 1. Total storage and inactive storage in multi-purpose dams, Korea

HKSJBV_2018_v20n4_353_t0001.png 이미지

Table 2. Comparison of inactive storage and drought storage

HKSJBV_2018_v20n4_353_t0002.png 이미지

Table 3. Climate statics by period

HKSJBV_2018_v20n4_353_t0003.png 이미지

Table 4. Calculation of present and future SL’s

HKSJBV_2018_v20n4_353_t0004.png 이미지

Table 5. Drought storage of imha dam (present)

HKSJBV_2018_v20n4_353_t0005.png 이미지

Table 6. Comparison of inactive storage and drought storage in imha dam (present)

HKSJBV_2018_v20n4_353_t0006.png 이미지

Table 7. Future drought storage of imha dam

HKSJBV_2018_v20n4_353_t0007.png 이미지

Table 8. Comparison of present and future drought storage in imha dam

HKSJBV_2018_v20n4_353_t0008.png 이미지

References

  1. An, JH, Song, JH, Kang, MS, Song, IH, Jun, SM, and Park, JH (2015). Regression Equations for Estimating the TANK Model Parameters, J. of the Korean Society of Agricultural Engineers, 57(4), pp.121-133. [Korean Literature] [DOI http://dx.doi.org/10.5389/KSAE.2015.57.4.121]
  2. Cho, HJ and Kang, HS (2013). Effects of Control of Dam Sedimentation by a Hydraulic Structure in a Reservoir, J. of Korea Water Resources Association, 46(12), pp. 1157-1167. [Korean Literature] [DOI 10.3741/JKWRA.2013.46.12.1157]
  3. Hashimoto, T, Stcdinger, JR, and Loucks, DP (1982). Reliability, resiliency and vulnerability criteria for water resource system performance evaluation, Water Resources Research, 18(1), pp. 14-20. [DOI https://doi.org/10.1029/WR018i001p00014]
  4. IPCC (2013). Summary for Policy makers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  5. Kelly, V (1986). Reservoir Operation During Drought: Case Studies, Research Document 25, Hydrologic Engineering Center, US Army Corps of Engineers.
  6. Kim, SJ, Kim, YS, Kim, HS (2014). Drought and Flood Risk Assessment of Chungju Dam Considering Climate Change, Water for future, 47(7), pp. 8-17. [Korean Literature]
  7. Korea Water Resources Corporation (2017). Dam Operation Manual.
  8. Kull, D (2006). Connections Between Recent Water Level Drops in Lake Victoria, Dam Operations and Drought, Hydrologic Engineer, Nairobi, Kenya [http://www.internationalrivers.org/files/attached-files/full_report_pdf.pdf]
  9. Lee, DR, Ahn, JH, Moon, JW, Lee, DH (2006). Development of Water Supply Capacity Index to Monitor Droughts in a Reservoir, J. of Korea Water Resources Association, 39(3), pp. 199-214. [Korean Literature] [DOI 10.3741/JKWRA.2006.39.3.199]
  10. Lee, GM, Yi, JU (2012). Analysis of Emergency Water Supply Effects of Multipurpose Dams Using Water Shortage Index, J. of Korea Water Resources Association, 45(11), pp. 1143-1156. [Korean Literature] [DOI : 10.3741/JKWRA. 2012.45.11.1143]
  11. Ministry of Land, Infrastructure and Transport (2002). Nakdong River Basin Survey.
  12. Ministry of Land, Infrastructure and Transport (2011). Design criteria of Dam.
  13. Ministry of Land, Infrastructure and Transport (2011). National Water Resource Plan(2011-2020)
  14. Ministry of Land, Infrastructure and Transport (2016). Climate Change Adaptation for Sustainable Water Supply.
  15. RIM, CS (2008). Comparison of Evapotranspiration Estimation Approaches Considering Grass Reference Crop, J. of Korea Water Resources Association, 41(2), pp. 212-228. [Korean Literature] [DOI 10.3741/JKWRA.2008.41.2.212]
  16. US Army Corps of Engineers (1996). Developing Seasonal and Long-term Reservoir System Operation Plans using HEC-PRM.
  17. US. Army Corps of Engineers (2005). Users Guide to RMA2 WES Wersion 4.5, Wextech System.
  18. US. Dept. of the Interior (1987). Design of Small Dams, Bureau of Reclamation.
  19. Yoon, SK, Kim, GH, Yeo, KD, Shim, MP (2008). A Study on Estimating Emergency Water Supply Benefits by Dam, Korea Water Resources Association Conference, pp. 1540-1544. [Korean Literature]