DOI QR코드

DOI QR Code

Simulation based Target Geometry Determination Method for Extrinsic Calibration of Multiple 2D Laser Scanning System

다중 2D 레이저 스캐너 시스템의 외부 표정요소 캘리브레이션을 위한 시뮬레이션 기반 표적 배치 결정 기법

  • Ju, Sungha (Dept. of Civil and Environmental Engineering, Yonsei University) ;
  • Yoon, Sanghyun (Dept. of Civil and Environmental Engineering, Yonsei University) ;
  • Park, Sangyoon (Dept. of Civil and Environmental Engineering, Yonsei University) ;
  • Heo, Joon (Dept. of Civil and Environmental Engineering, Yonsei University)
  • Received : 2018.09.12
  • Accepted : 2018.11.13
  • Published : 2018.12.31

Abstract

Acquiring indoor point cloud, using SLAM (Simultaneous Localization and Mapping) based mobile mapping system, is an element progress for development of as-build BIM (Building Information Model) for the maintenance of the building. In this research we proposed a simulation-based target geometry determination for extrinsic calibration of multiple 2D laser scanning mobile system. Four different types of calibration sites were designed: (1) circle type; (2) rectangle type; (3) double circle type; and (4) double rectangle type. Based on the measurement values obtained from each simulated calibration site geometry, least squares solution based extrinsic calibration was derived. As a result, the rectangle type geometry is most suitable for extrinsic calibration of this system. Also, correlation values between extrinsic calibration parameters were high, and calibration results were distinct according to the calibration sites.

SLAM (Simultaneous Localization and Mapping) 기반 모바일 매핑 시스템을 활용한 실내 공간의 포인트 클라우드 취득은 건축물의 유지, 관리를 위한 as-built BIM (Building Information Model) 구축의 기초 공정이다. 본 연구에서는 다중 2D 레이저 스캐너로 구성된 모바일 매핑 시스템의 구축을 위한 시뮬레이션 기반 검정(calibration) 표적의 구조 결정 방법을 제안하였다. 2D 레이저 스캐너의 외부 표정요소 검정을 위해 (1) 원형, (2) 사각형, (3) 이중 원형, (4) 이중 사각형 형태의 표적을 구성하였다. 시뮬레이션을 통해 얻어진 각 표적 관측 값을 토대로, 최소제곱법 기반의 외부 표정요소 검정을 수행하였다. 그 결과 사각형 형태의 표적 구조가 주어진 시스템의 검정에 가장 적합한 형태임을 확인하였다. 또한 외부 표정요소 간의 높은 상관성을 확인할 수 있었으며, 표적의 구조에 따른 외부 표정요소의 검정 결과가 상이한 것으로 나타났다.

Keywords

GCRHBD_2018_v36n6_443_f0001.png 이미지

Fig. 1. Laser scanning system for acquiring 3D point cloud

GCRHBD_2018_v36n6_443_f0002.png 이미지

Fig. 2. Design for coordinate system of multiple 2D laser scanning system (Jung et al., 2015a)

GCRHBD_2018_v36n6_443_f0003.png 이미지

Fig. 3. Geometries of calibration sites simulation

GCRHBD_2018_v36n6_443_f0004.png 이미지

Fig. 5. Correlation matrices of simulation based on constrained LESS

GCRHBD_2018_v36n6_443_f0005.png 이미지

Fig. 4. Correlation matrices of simulation

Table 1. Trace and largest eigenvalue of covariance matrix

GCRHBD_2018_v36n6_443_t0001.png 이미지

Table 2. Result of deducting extrinsic orientation parameters by constrained LESS (lever-arm)

GCRHBD_2018_v36n6_443_t0002.png 이미지

Table 3. Result of deducting extrinsic orientation parameters by constrained LESS (Boresight)

GCRHBD_2018_v36n6_443_t0003.png 이미지

Table 4. Trace and largest eigenvalue of covariance matrix based on constrained least square method

GCRHBD_2018_v36n6_443_t0004.png 이미지

References

  1. Amiri-Simkooei, A.R., Asgari, J., Zangeneh-Nejad, F., and Zaminpardaz, S. (2012), Basic concepts of optimization and design of geodetic networks, Journal of Surveying Engineering, Vol. 138, No. 4, pp. 172-183. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000081
  2. Berne, J.L. and Baselga, S. (2004), First-order design of geodetic networks using the simulated annealing method, Journal of Geodesy, Vol.78, No. 1-2, pp. 47-54. https://doi.org/10.1007/s00190-003-0365-y
  3. Carbonari, G., Stravoravdis, S., and Gausden, C. (2015), Building information model implementation for existing buildings for facilities management: a framework and two case studies, In: L. Mahdjoubi, C.A. Brebbia, and R. Laing (eds.), Building Information Modelling (BIM) in Design, Construction and Operations, WIT Press, Southampton, UK, pp. 149, 395-406.
  4. Choi, D.G., Bok, Y., Kim, J.S., and Kweon, I.S. (2016), Extrinsic calibration of 2-D lidars using two orthogonal planes, IEEE Transactions on Robotics, Vol. 32, No. 1, pp. 83-98. https://doi.org/10.1109/TRO.2015.2502860
  5. Dore, C. and Murphy, M. (2014), Semi-automatic generation of as-built BIM facade geometry from laser and image data, Journal of Information Technology in Construction (ITcon), Vol. 19, No. 2, pp. 20-46.
  6. Dermanis, A. (1994), The photogrammetric inner constraints, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 49, No. 1, pp. 25-39. https://doi.org/10.1016/0924-2716(94)90053-1
  7. Gielsdorf, F., Grundig, L., and Milev, I. (2008), Deformation analysis with 3D laser scanning, In Proceedings of the 13th FIG Symposium, 12-15 May, Lisbon, Spain, pp. 1-9.
  8. Golparvar-Fard, M., Pena-Mora, F., and Savarese, S. (2011), Integrated sequential as-built and as-planned representation with D 4 AR tools in support of decision-making tasks in the AEC/FM industry, Journal of Construction Engineering and Management, Vol. 137, No. 12, pp. 1099-1116. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000371
  9. Grafarend, E.W. (1974), Optimization of geodetic networks, Bolletino di Geodesia a Science Affini, Vol. 33, No. 4, pp. 351-406.
  10. Grafarend, E.W. and Sanso, F. (Eds.). (2012), Optimization and Design of Geodetic Networks, Springer Science & Business Media, Berlin.
  11. Hong, S., Jung, J., Kim, S., Cho, H., Lee, J., and Heo, J. (2015), Semi-automated approach to indoor mapping for 3D as-built building information modeling, Computers, Environment and Urban Systems, Vol. 51, pp. 34-46. https://doi.org/10.1016/j.compenvurbsys.2015.01.005
  12. Hong, S., Park, I., Heo, J., and Choi, H. (2012), Indoor 3D Modeling Approach based on Terrestrial LiDAR, Journal of the Korean Society of Civil Engineers, Vol. 32, No. 5D, pp. 527-532. (in Korean with English abstract) https://doi.org/10.12652/Ksce.2012.32.5D.527
  13. Jung, J., Kim, J., Yoon, S., Kim, S., Cho, H., Kim, C., and Heo, J. (2015a), Bore-sight calibration of multiple laser range finders for kinematic 3D laser scanning systems, Sensors, Vol. 15, No. 5, pp. 10292-10314. https://doi.org/10.3390/s150510292
  14. Jung, J., Yoon, S., Ju, S., and Heo, J. (2015b), Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM, Sensors, Vol. 15, No. 10, pp. 26430-26456. https://doi.org/10.3390/s151026430
  15. Lichti, D.D. and Chow, J.C. (2013), Inner constraints for planar features, The Photogrammetric Record, Vol. 28, No. 141, pp. 74-85. https://doi.org/10.1111/j.1477-9730.2012.00700.x
  16. Papo, H. and Perelmuter, A. (1980), Free net analysis of storage tank calibration, In 14th International Congress of the ISPRS, Commission, Vol. 1980, pp. 593-602.
  17. Patraucean, V., Armeni, I., Nahangi, M., Yeung, J., Brilakis, I., and Haas, C. (2015), State of research in automatic as-built modelling, Advanced Engineering Informatics, Vol. 29, No. 2, pp. 162-171. https://doi.org/10.1016/j.aei.2015.01.001
  18. Wang, Y.K., Huo, J., and Wang, X.S. (2014), A real-time robotic indoor 3D mapping system using duel 2D laser range finders, Chinese Control Conference - 2014, 28-30 July, Nanjing, China, pp. 8542-8546.
  19. Yang, J., Shi, Z.K., and Wu, Z.Y. (2016), Towards automatic generation of as-built BIM: 3D building facade modeling and material recognition from images, International Journal of Automation and Computing, Vol. 13, No. 4, pp. 338-349. https://doi.org/10.1007/s11633-016-0965-7

Cited by

  1. 구조물 및 지형변위 모니터링을 위한 토털스테이션의 활용 vol.21, pp.4, 2018, https://doi.org/10.5762/kais.2020.21.4.582