DOI QR코드

DOI QR Code

Zero-Current Phenomena Analysis of the Single IGBT Open Circuit Faults in Two-Level and Three-Level SVGs

  • Wang, Ke (School of Electrical and Power Engineering, China University of Mining and Technology) ;
  • Zhao, Hong-Lu (School of Electrical and Power Engineering, China University of Mining and Technology) ;
  • Tang, Yi (School of Electrical and Power Engineering, China University of Mining and Technology) ;
  • Zhang, Xiao (School of Electrical and Power Engineering, China University of Mining and Technology) ;
  • Zhang, Chuan-Jin (School of Electrical and Power Engineering, China University of Mining and Technology)
  • Received : 2017.05.23
  • Accepted : 2017.11.04
  • Published : 2018.03.20

Abstract

The fact that the reliability of IGBTs has become a more and more significant aspect of power converters has resulted in an increase in the research on the open circuit (OC) fault location of IGBTs. When an OC fault occurs, a zero-current phenomena exists and frequently appears, which can be found in a lot of the existing literature. In fact, fault variables have a very high correlation with the zero-current interval. In some cases, zero-current interval actually decides the most significant fault feature. However, very few of the previous studies really explain or prove the zero-current phenomena of the fault current. In this paper, the zero-current phenomena is explained and verified through mathematical derivation, based on two-level and three-level NPC static var generators (SVGs). Mathematical models of single OC fault are deduced and it is concluded that a zero-current interval with a certain length follows the OC faults for both two-level and NPC three-level SVGs. Both inductive and capacitive reactive power situations are considered. The unbalanced load situation is discussed. In addition, simulation and experimental results are presented to verify the correctness of the theoretical analysis.

Keywords

E1PWAX_2018_v18n2_627_f0001.png 이미지

Fig. 1. Schematic of a two-level SVG.

E1PWAX_2018_v18n2_627_f0002.png 이미지

Fig. 2. Fault phase current iA before and after a SA1 OC fault.

E1PWAX_2018_v18n2_627_f0003.png 이미지

Fig. 3. Simplified schematic of a two-level SVG in a SA1 OCfault.

E1PWAX_2018_v18n2_627_f0004.png 이미지

Fig. 4. SA1 OC fault in the inductive power condition for atwo-level SVG: (a) comparison between eA and ?f; (b) effect of(SB,SC) on the sign of diA/dt.

E1PWAX_2018_v18n2_627_f0005.png 이미지

Fig. 5. Simulation results of a SA1 OC fault in the inductivepower condition for a two-level SVG : (a) fault phase current iA,supply voltage eA and (SB,SC); (b) diA/dt and (SB,SC).

E1PWAX_2018_v18n2_627_f0006.png 이미지

Fig. 6. SA1 OC fault in the capacitive power condition for atwo-level SVG: (a) comparison between eA and ?f; (b) effect of(SB,SC) on the sign of diA/dt.

E1PWAX_2018_v18n2_627_f0007.png 이미지

Fig. 7. Simulation results of a SA1 OC fault in the capacitivepower condition for a two-level SVG: (a) fault phase current iA,supply voltage eA and (SB,SC); (b) diA/dt and (SB,SC).

E1PWAX_2018_v18n2_627_f0008.png 이미지

Fig. 8. Schematic of a NPC three-level SVG.

E1PWAX_2018_v18n2_627_f0009.png 이미지

Fig. 9. Simplified schematic of a NPC SVG in the presence of aSA1 OC fault.

E1PWAX_2018_v18n2_627_f0010.png 이미지

Fig. 10. SA1 OC fault in the inductive power condition for a NPCthree-level SVG: (a) comparison between eA and ?f; (b) effect of(SA,SB,SC) on the sign of diA/dt.

E1PWAX_2018_v18n2_627_f0011.png 이미지

Fig. 11. Simulation results of a SA1 OC fault in the inductivepower condition for a NPC three-level SVG .

E1PWAX_2018_v18n2_627_f0012.png 이미지

Fig. 12. Simplified schematic of a NPC three-level SVG in thepresence of a SA2 OC fault.

E1PWAX_2018_v18n2_627_f0013.png 이미지

Fig. 13. SA2 OC fault in the inductive power condition for a NPCthree-level SVG: (a) comparison between eA and ?f; (b) effects of(SA,SB,SC) on the sign of diA/dt.

E1PWAX_2018_v18n2_627_f0014.png 이미지

Fig. 14. Simulation results of a SA2 OC fault in the inductivepower condition for a NPC three-level SVG.

E1PWAX_2018_v18n2_627_f0015.png 이미지

Fig. 15. SA1 OC fault in the capacitive power condition for a NPCthree-level SVG: (a) comparison between eA and ?f; (b) effect of(SA,SB,SC) on the sign of diA/dt.

E1PWAX_2018_v18n2_627_f0016.png 이미지

Fig. 16. Simulation results of a SA1 OC fault in the capacitivepower condition for a NPC three-level SVG.

E1PWAX_2018_v18n2_627_f0017.png 이미지

Fig. 17. SA2 OC fault in the capacitive power condition for a NPCthree-level SVG: (a) comparison between eA and ?f; (b) effect of(SA,SB,SC) on the sign of diA/dt.

E1PWAX_2018_v18n2_627_f0018.png 이미지

Fig. 18. Simulation results of a SA2 OC fault in the capacitivepower condition for a NPC three-level SVG.

E1PWAX_2018_v18n2_627_f0019.png 이미지

Fig. 19. Zero current interval in the unbalanced condition for atwo-level SVG.

E1PWAX_2018_v18n2_627_f0020.png 이미지

Fig. 20. Experimental prototypes: (a) two-level; (b) NPC three-level.

E1PWAX_2018_v18n2_627_f0021.png 이미지

Fig. 21. SA1 OC fault for a two-level SVG: (a) inductive reactivepower condition; (b) capacitive reactive power condition.

E1PWAX_2018_v18n2_627_f0022.png 이미지

Fig. 22. OC fault for a two-level SVG: (a) SA1 OC fault for the inductive reactive power condition; (b) SA2 OC fault for the inductivereactive power condition; (c) SA1 OC fault for the capacitive reactive power condition; (d) SA2 OC fault for the capacitive reactive powercondition.

TABLE I SIMULATION PARAMETERS

E1PWAX_2018_v18n2_627_t0001.png 이미지

TABLE II VALUES OF -F

E1PWAX_2018_v18n2_627_t0002.png 이미지

TABLE III SUMMARY OF THE ZERO-CURRENT INTERVAL FOR ALL CASES

E1PWAX_2018_v18n2_627_t0003.png 이미지

TABLE IV EXPERIMENTAL PARAMETERS

E1PWAX_2018_v18n2_627_t0004.png 이미지

References

  1. Y. Shaoyong, A. Bryant, P. Mawby, D. Xiang, L. Ran, and P. Tavner, "An industry-based survey of reliability in power electronic converters," IEEE Trans. Ind. Appl., Vol. 47, No. 3, pp. 1441-1451, May/Jun. 2011. https://doi.org/10.1109/TIA.2011.2124436
  2. S. Ouni, M. R. Zolghadri, J. Rodriguez, M. Shahbazi, H. Oraee, P. Lezana, and A. U. Schmeisser. "Quick diagnosis of short circuit faults in cascaded h-bridge multilevel inverters using FPGA," J. Power Electron., Vol. 17, No. 1, pp. 56-66, Jan. 2017. https://doi.org/10.6113/JPE.2017.17.1.56
  3. L. Bin and S. K. Sharma, "A literature review of IGBT fault diagnostic and protection methods for power inverters," IEEE Trans. Ind. Appl., Vol. 45, No. 5, pp. 1770-1777, Sep./Oct. 2009. https://doi.org/10.1109/TIA.2009.2027535
  4. B. Mirafzal, "Survey of fault-tolerance techniques for three-phase voltage source inverters," IEEE Trans. Ind. Electron., Vol. 61, No. 10, pp. 5192-5202, Oct. 2014. https://doi.org/10.1109/TIE.2014.2301712
  5. A. M. S. Mendes, A. J. M. Cardoso, and E. S. Saraiva, "Voltage source inverter fault diagnosis in variable speed ac drives, by Park's vector approach," in Proc. 7th Int. Conf. Power Electron. Variable Speed Drives (456), pp. 538-543, 1998.
  6. J. O. Estima, N. M. A. Freire, and A. J. M. Cardoso, "Recent advances in fault diagnosis by Park's vector approach," in Proc. IEEE WEMDCD, pp. 279-288, 2013.
  7. J. A. A. Caseiro, A.M. S.Mendes, and A. J.M. Cardoso, "Open-Circuit Fault Diagnosis and Fault-Tolerant Control for a Grid-Connected NPC Inverter tolerance using the average current Park's Vector approach," in Proc. IEEE IEMDC, Miami, FL, USA, 2009, pp. 695-701, 2009.
  8. R. Peuget, S. Courtine, and J. P. Rognon, “Fault detection and isolation on a PWM inverter by knowledge-based model,” IEEE Trans. Ind. Appl., Vol. 34, No. 6, pp. 1318-1326, Nov./Dec. 1998. https://doi.org/10.1109/28.739017
  9. M. Trabelsi, M. Boussak, and M. Gossa, "Multiple IGBTs open circuit faults diagnosis in voltage source inverter fed induction motor using modified slope method," in Proc. XIX Int. Conf. Electr. Mach., pp. 1-6, 2010.
  10. W. Sleszynski, J. Nieznanski, and A. Cichowski, "Opentransistor fault diagnostics in voltage-source inverters by analyzing the load currents," IEEE Trans. Ind. Electron., Vol. 56, No. 11, pp. 4681-4688, Nov. 2009. https://doi.org/10.1109/TIE.2009.2023640
  11. J. O. Estima and A. J.M. Cardoso, "A new approach for real-time multiple open-circuit fault diagnosis in voltage source inverters," IEEE Trans. Ind. Appl., Vol. 47, No. 6, pp. 2487-2494, Nov./Dec. 2011. https://doi.org/10.1109/TIA.2011.2168800
  12. N. M. A. Freire, J. O. Estima, and A. J. M. Cardoso, "Multiple open-circuit fault diagnosis in voltage-fed PWM motor drives using the current Park's vector phase and the currents polarity," in Proc. 8th IEEE Int. Symp. Diagnost. Elect. Mach., Power Electron. Drives, pp. 397-404., 2011.
  13. N. M. A. Freire, J. O. Estima, and A. J. M. Cardoso, "A voltage-based approach without extra hardware for open-circuit fault diagnosis in closed-loop PWM AC regenerative drives," IEEE Trans. Ind. Electron., Vol. 61, No. 9, pp. 4960-4970, Sep. 2014. https://doi.org/10.1109/TIE.2013.2279383
  14. M. Shahbazi, P. Poure, S. Saadate, and M. R. Zolghadri, "FPGA-based fast detection with reduced sensor count for a fault-tolerant three-phase converter," IEEE Trans. Ind. Informat., Vol. 9, No. 3, pp. 1343-1350, Aug. 2013. https://doi.org/10.1109/TII.2012.2209665
  15. R. Ribeiro, C. Jacobina, E. da Silva, and A. Lima, "Fault detection of open-switch damage in voltage-fed PWM motor drive systems," IEEE Trans. Power Electron., Vol. 18, No. 2, pp. 587-593, Mar. 2003.
  16. S. Karimi, A. Gaillard, P. Poure, and S. Saadate, "FPGA-based real-time power converter failure diagnosis for wind energy conversion systems," IEEE Trans. Ind. Electron., Vol. 55, No. 12, pp. 4299-4308, Dec. 2008. https://doi.org/10.1109/TIE.2008.2005244
  17. Q.-T. An, L.-Z. Sun, K. Zhao, and L. Sun, "Switching function model-based fast-diagnostic method of openswitch faults in inverters without sensors," IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 119-126, Jan. 2011. https://doi.org/10.1109/TPEL.2010.2052472
  18. M. R. Mamat, M. Rizon, and M. S. Khanniche, "Fault detection of 3-phase VSI using wavelet-fuzzy algorithm," Amer. J. Appl. Sci., Vol.3, No. 1, pp. 1642-1648, Mar. 2006. https://doi.org/10.3844/ajassp.2006.1642.1648
  19. F. Charfi, F. Sellami, and K. Al-Haddad, "Fault diagnosis in power system using wavelet transforms and neural networks," in Proc. IEEE Int. Symp. Ind. Electron., pp. 1143-1148, 2006.
  20. K. Debebe, V. Rajagopalan, and T. S. Sankar, "Expert systems for fault diagnosis of VSI fed ac drives," in Conf. Rec. IEEE IAS Annu. Meeting, pp. 368-373, 1991.
  21. U. Choi, K. Lee, and F. Blaabjerg, "Diagnosis and tolerant strategy of an open-switch fault for t-type three-level inverter systems," IEEE Trans. Ind. Appl., Vol. 50, No. 1, pp. 495-508, Jan./Feb. 2014. https://doi.org/10.1109/TIA.2013.2269531
  22. A. Mohammadpour, S. Sadeghi, and L. Parsa, "A generalized fault-tolerant control strategy for five-phase PM motor drives considering star, pentagon, and pentacle connections of stator windings," IEEE Trans. Ind. Electron., Vol. 61, No. 1, pp. 63-75, Jan. 2014. https://doi.org/10.1109/TIE.2013.2247011
  23. A. L. Julian and G. Oriti, "A comparison of redundant inverter topologies to improve voltage source inverter reliability," IEEE Trans. Ind. Appl., Vol. 43, No. 5, pp. 1371-1378, Sep./Oct. 2007. https://doi.org/10.1109/TIA.2007.904436
  24. S. Ceballos, J. Pou, J. Zaragoza, E. Robles, J. L. Villate, and J. L. Martin, "Fault-tolerant neutral-point-clamped converter solutions based on including a fourth resonant leg," IEEE Trans. Ind. Electron., Vol. 58, No. 6, pp. 2293-2303, Jun. 2011. https://doi.org/10.1109/TIE.2010.2069075
  25. M. B. Abadi, A. M. S. Mendes, S. M. A. Cruz, "Three-level NPC inverter fault diagnosis by the average current Park's vector approach," 2012 International Conference on Electrical Machines, pp. 1893-1898, 2012.
  26. U.-M. Choi, H.-G. Jeong, K.-B. Lee, and F. Blaabjerg, "Method for detecting an open-switch fault in a gridconnected NPC inverter system," IEEE Trans. Power Electron., Vol. 27, No. 6, pp. 2726-2739, Jun. 2012. https://doi.org/10.1109/TPEL.2011.2178435
  27. S.-M. Jung, J.-S. Park, H.-W. Kim, K.-Y. Cho, and M.-J. Youn, "An MRAS-based diagnosis of open-circuit fault in PWM voltage-source inverters for PM synchronous motor drive systems," IEEE Trans. Power Electron., Vol. 28, No. 5, May 2013.
  28. A. M. S. Mendes, M. B. Abadi, and S. M. A. Cruz, “Fault diagnostic algorithm for three-level neutral point clamped AC motor drives, based on the average current Park’s vector,” IET Power Electron., Vol. 7, No. 5, pp. 1127-1137, May 2014. https://doi.org/10.1049/iet-pel.2013.0416
  29. J. O. Estima and A. J. M. Cardoso, "A new algorithm for real-time multiple open-circuit fault diagnosis in voltage-fed PWM motor drives by the reference current errors," IEEE Trans. Ind. Electron., Vol. 60, No. 8, pp. 3496-3505, Aug. 2013. https://doi.org/10.1109/TIE.2012.2188877
  30. Q.-T. An, L.-Z. Sun, K. Zhao, and L. Sun, "Switching function model-based fast-diagnostic method of open-switch faults in inverters without sensors," IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 119-126, Jan. 2011. https://doi.org/10.1109/TPEL.2010.2052472
  31. L. Tian, F. Wu, Y. Shi, and J. Zhao. "A current dynamic analysis based open-circuit fault diagnosis method in voltage-source inverter fed induction motors," J. Power Electron., Vol. 17, No. 3, pp. 725-732, May 2017. https://doi.org/10.6113/JPE.2017.17.3.725
  32. C. Shu, C. Ya-Ting, Y. Tian-Jian, and W. Xun, "A novel diagnostic technique for open-circuited faults of inverters based on output line-to-line voltage model," IEEE Trans. Ind. Electron., Vol. 63, No. 7, pp. 4412-4421, Feb. 2016. https://doi.org/10.1109/TIE.2016.2535960
  33. M. B. Abadi, A. M. S. Mendes, and S. M. A. Cruz, "A real-time method for the diagnosis of multiple switch faults in NPC inverters based on output currents analysis," J. Power Electron., Vol. 16, No. 4, pp. 1415-1425, Jul. 2016. https://doi.org/10.6113/JPE.2016.16.4.1415
  34. U.-M. Choi, K.-B. Lee, and F. Blaabjerg, "Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems," IEEE Trans. Ind. Appl., Vol. 50, No. 1, pp. 495-508, Jan./Feb. 2014. https://doi.org/10.1109/TIA.2013.2269531
  35. J. Li, A. Q. Huang, Z. Liang, and S. Bhattacharya, "Analysis and design of active NPC ANPC inverters for fault-tolerant operation of high-power electrical drives," IEEE Trans. Power Electron., Vol. 27, No. 2, pp. 519-533, Feb. 2012. https://doi.org/10.1109/TPEL.2011.2143430
  36. U.-M. Choi, J.-S. Lee, F. Blaabjerg, and K.-B. Lee, "Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter," IEEE Trans. Power Electron., Vol. 31, No. 10, pp. 7234-7247, Oct. 2016. https://doi.org/10.1109/TPEL.2015.2510224
  37. D.-K Choi, S.-H. Moon, and K.-B. Lee, "An open-switch fault detection method and tolerance controls based on MPDPC in a NPC rectifier," in Proc. IEEE CENCON, pp. 354-359, 2014.
  38. L. M. A. Caseiro, A. M. S. Mendes, P. M. A. F. Lopes, "Open-circuit fault diagnosis in neutral-point-clamped active power filters based on instant voltage error with no additional sensors," 2015 IEEE Applied Power Electronics Conference and Exposition, pp. 2217-2222, 2015.
  39. U.-M. Choi, H.-G. Jeong, K.-B. Lee, and F. Blaabjerg, "Method for detecting an open-switch fault in a grid-connected NPC inverter system," IEEE Trans. Power Electron., Vol. 27, No. 6, pp. 2726-2739, Jun. 2012. https://doi.org/10.1109/TPEL.2011.2178435
  40. E. R. da Silva, W. S. Lima, A. S. de Oliveira, C. B. Jacobina, and H. Razik, "Detection and compensation of switch faults in a three level inverter," 2006 37th IEEE Power Electronics Specialists Conference, pp. 1-7, 2006.